Design and Simulation of Full State Feedback Controller for DC Motor
Abstract
This paper presents the design and simulation of a Full State Feedback (FSFB) controller which controls the angular position of Direct Current (DC) motor. The controller is used to reduce the rise time of the system when given a position set point. An integral controller is then added to reduce the steady state error of the output. Once the transfer function of the DC motor is found, the mathematical model is converted to state space. The process involves utilizing the Pole placement technique to identify the state feedback gain, which subsequently improves the system’s response time. The results, which are simulated in Simulink, show that the addition of FSFB control significantly reduces the rise time of the response from 4.013s to 0.966s. To overcome the steady-state error of 9.84, integral control is added which reduced the error to zero. A reduction in rise time and steady state-error proves that a FSFB controller with integral control performs better than the original closed loop system without a controller. The research contribution is based on the mathematical modeling of a DC motor and the development of a state feedback controller, aiming to simplify the modeling process with its associated controllers. The methods presented can be used on any DC motor with known parameters. Finally, the control system is tested using random set points to prove the resilience of the controller to input changes.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).