Single Input Fuzzy Logic Controller for Liquid Slosh Suppression
Keywords:
liquid slosh control, single input fuzzy logic controller, intelligent controller, SISOAbstract
The chaotic nature of liquid slosh and the complex fluid dynamic motion in the container makes the traditional model-based control techniques complex and difficult to synthesize in practice. This paper presents investigations into the development of single input fuzzy logic controller (SIFLC) for liquid slosh control. The proposed approach, known as the SIFLC, reduces the conventional two-input FLC (CFLC) to a single input single output (SISO) controller. Two parallel SIFLC are developed for both lateral tank position and liquid slosh angle control. With the purpose to confirm the design of control scheme, a liquid slosh model is considered to represent the lateral slosh motion. The performances of the control schemes are accessed in terms of lateral tank tracking capability, level of liquid slosh reduction and time response specifications. Supremacy of the proposed approach is shown by comparing the results with hybrid model-free Fuzzy-PID controller with derivative filter (PIDF). Finally, it is seen from the simulation results that the proposed control scheme has able to reduce the liquid slosh without unambiguously model the liquid slosh behavior.
Downloads
References
P. Krata, “Linear Characteristics of the Sloshing Phenomenon for the Purpose of On-Board Ship’s Stability Assessment,” Journal of Theoretical and Applied Mechanics. 47 (2). pp. 307-320. 2009.
K. Terashima and K. Yano, “Sloshing analysis and suppression control of tilting-type automatic pouring machine,” Control Engineering Practice. Vol 9. pp. 607-620. 2001.
T. Acarman and U. Ozguner, “Rollover prevention for heavy trucks using frequency shaped sliding mode control,” International Journal of Vehicle Mechanics and Mobility. Vol. 44 (10). 2006.
B. U. Guzel, M. Gradinscak, S. E. Semercigil and O. F. Turan, “Control of Liquid Sloshing in Flexible Containers: Part 1. Added Mass,” in 15th Australasian Fluid Mechanics Conference, Sydney, Australia, 13-17 December 2004.
A. P. March, M. Prakash, S. E. Semercigil and O. F. Turan, “A shallow-depth sloshing absorber for structural control,” Journal of Fluids and Structures, vol. 26. pp. 780-792. 2010.
A. Alsaibie and W. Singhose, “Experimental Testing of Liquid Slosh Suppression in a Suspended Container with Compound-Pendulum Dynamics,” in 2013 9th Asian Control Conference (ASCC), Istanbul, 2013, pp. 1-6.
A. Samba Murthy, A. Kivila and W. Singhose, “Slosh Suppression of a Liquid in a Suspended Container using Robust Input Shaping,” in 19th International Congress on Sound and Vibration, Vilnius, Lithuania, July 8-12. 2012. pp. 1-8.
Q. Zang, J. Huang and Z. Liang, “Slosh Suppression for Infinite Modes in a Moving Liquid Container.” IEEE/ASME Transactions on Mechatronics. Vol. 20 (1). pp. 217-225. 2015.
L. Moriello, L. Biagiotti, C. Melchiorri and A. Paoli, “Control of Liquid Handling Robotic Systems: a Feed-Forward Approach to Suppress Sloshing,” in IEEE International Conference on Robotics and Automation (ICRA), Singapore, May 29-June 3, 2017. pp. 4286-4291.
L. Consolini. A. Costalunga. A. Piazzi and M. Vezzosi, “Minimum-time feedforward control of an open liquid container,” in IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, 2013, pp. 3592-3597.
D. Setyo Purnomo, A. R. Anom Besari and Z. Darojah, “Control of Liquid Sloshing Container using Active Force Control Method,” IOP Conf. Series: Materials Science and Engineering. Vol. 190. pp. 1-8. 2017.
M. A. Ahmad, M. A. Rohani, R. M. T. Raja Ismail, M. F. Mat Jusof, M. H. Suid and A. N. K. Nasir, “A Model-Free PID Tuning to Slosh Control using Simultaneous Perturbation Stochastic Approximation,” in 2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), George Town, 2015, pp. 331-335.
N. S. Abdul Shukor, M. A. Ahmad and M. Z. Mohd Tumari. “Data-driven PID Tuning based on Safe Experimentation Dynamics for Control of Liquid Slosh,” in IEEE 8th Control and System Graduate Research Colloquium (ICSGRC), 4-5 August 2017 , Shah Alam, Malaysia. pp. 62-66.
B. Robu, L. Baudouin, C. Prieur and D. Arzelier, “Simultaneous H-infinity vibration control of liquid/plate system via reduced-order controller,” IEEE Transactions on Control Systems Technology, Institute of Electrical and Electronics Engineers. Vol. 20(3). pp 700-711. 2012.
S. Kurode, S. K. Spurgeon, B. Bandyopadhyay and P. S. Gandhi, “Sliding Mode Control for Slosh-Free Motion Using a Nonlinear Sliding Surface,” IEEE/ASME Transactions on Mechatronics. Vol. 18(2). pp. 714-724. 2013.
J. P. Mishra and S. R. Kurode, “Robust Output-Feedback Control for Container-Slosh System using Variable Gain Super-Twisting Algorithm,” in 13th IEEE Workshop on Variable Structure Systems, Nantes, France. June 29-July 2, 2014. pp. 1-6.
M. R. Ghazali, Z. Ibrahim, M. H. Suid, M. S. Saealal and M. Z. Mohd Tumari, “Single Input Fuzzy Logic Controller for Flexible Joint Manipulator,” International Journal of Innovative Computing, Information and Control. Vol. 12 (1). pp. 181-191. 2016.
M. A. Zawawi, J. Bidin, M. Z. Mohd Tumari and M. S. Saealal, “Investigation of Classical and Fuzzy Controller Robustness for Gantry Crane System Incorporating Payload, “ Third International Conference on Computational Intelligence, Modelling and Simulation (CIMSiM), Langkawi, Malaysia, Sept 20-22, 2011. pp. 141-146.
M. A. Ahmad, M. Z. Mohd Tumari and A. N. K. Nasir. Composite Fuzzy Logic Control Approach to a Flexible Joint Manipulator. International Journal of Advanced Robotic Systems. Vol. 10 (58). pp. 1-9. 2012.
M. S. M. Aras, M. Sulaiman, A. Khamis, M. H. Hairi, M. M. Ghazaly, M. K. M. Zambri and H. N. M. Shah, “Evaluation of Transient Response for Rotary Inverted Pendulum Positioning using Fuzzy Logic Controller,” International Journal of Electrical Engineering and Applied Sciences, Vol. 1, No. 1, pp. 9-16, 2018.
M. Z. M. Tumari, M. A. M. Nasir, S. Saat, A. S. R. A Subki, W. N. A. Rashid, M. H. Suid and M. R. Ghazali, “The Control Schemes of Vehicle Steer by Wire System by using Fuzzy Logic and PID Controller,” Research Journal of Applied Sciences, vol.13 (2). pp. 137-145. 2018.
B. J. Choi, S. W. Kwak and B. K. Kim. “Design and Stability of Single-Input Fuzzy Logic Controller,” IEEE Trans. Syst. Man Cybern., Part B, Cybern., vol. 30, no.2,. pp. 303-309. 2000.
H. N. Abramson. Analytical representation of lateral sloshing by mechanical models. NASA, Washington, DC, NASA Rep. SP-106. pp. 199-224. 1966.
K. Joshi. Modelling and analysis of fluid slosh under translation and pitching excitation. M. S. Thesis, Indian Institute Technology, Bombay, India, 2006.
S. M. Ayob, N. A. Azli and Z. Salam, “PWM DC_AC converter regulation using a multi-loop single input fuzzy PI controller,” J. Power Electron, vol.9, no. 1, pp. 124-131, 2009
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).