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Abstract —Precise and efficient fault management are essential in today's industrial environment
to avoid downtime and monetary losses. Any faulty events could affect factory process flow as well
as product quality. Recently, due to the advancement in signal monitoring with cloud data storage,
fault detection approach has changed from a model-based into to a data-driven approach. The main
goal of this study is to provide an initial insight of the data-driven fault detection approach focusing
on undergraduate or postgraduate students, including practitioners that are just new in this area.
At the first stage, the data generation and collection approach are described with one process plant
example, namely; the three-tank system. Later, detailed principal component analysis (PCA) and
threshold determination are explained using normal datasets. After that, the faulty dataset is used
to determine the performance of the PCA approach. It is found that the PCA approach is only able
to detect six out of eleven faulty conditions, which results in 54.4% of the fault detection
performance.
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l. Introduction

Efficient system operation is crucial for optimizing
production efficiency and avoiding financial losses in the
field of process engineering. A fault detection (FD)
system is essential to ensure the continuous and reliable
operation at the industrial plant. For example, sensor
failures unable to anticipate disruptions can have a domino
effect, such as resulting machine breakdown, interrupted
process flow, and consequently increased corrective costs
to fix the damaged components. The situation can escalate
until jeopardizing personnel safety and compromising the
surrounding environment [1]. Thus, adopting FD
approach in monitoring process plants becomes a
noteworthy aspect in large-scale manufacturing systems
[2].

Fault detection entails identifying abnormalities or
deviations from normal system behavior. These tasks are
the central focus in the preventive maintenance paradigm
[3], which allows proactive interventions to correct
problems before they become serious. In other words, FD
has the ability in early detection of faults while the plant

is still operating in a controllable region, which can help
to avoid abnormal event progression.

Moving towards the digitalization era, the data-
driven technique has been seen emerging in the study of
FD. Statistical or machine learning methods such as PCA,
Independent Component Analysis (ICA), Partial Least
Square (PLS) and Support Vector Machine (SVM) were
used in monitoring the process plant system [4]-[5] . At
the same time, there are also artificial intelligence
approaches such as autoencoder (AE) [6]-[7], long short-
term memory (LSTM)[8]-[9], and convolutional Neural
Networks (CNN) [10]-[11] that utilize the historical data
in predicting faulty events in manufacturing systems.

Despite the importance of fault detection in the
industrial systems, as well as the vast the data-driven
methods, the concept behind data-driven approach in FD
is less exposed in both undergraduate-level and
postgraduate studies. Thus, the main goal of this paper is
to provide theoretical insight with a simulation-based
validation of the FD concept in engineering systems using
a data-driven approach as an introduction to those who just
started in the data-driven FD area of study. The
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framework of the data-driven approach will be discussed,
and the concept of FD using PCA will be further explained
throughout this paper.

Il.  Methodology

A. Basic overview of data-driven fault detection
approach in engineering system

The data-driven approach starts with data collection of
normal and faulty conditions from the industrial system.
Recently, this stage has become handy due to the Internet
of Things (IOT) technology, SCADA, and cloud
computing that enable continuous process monitoring and
online data storage [12]-[14]. After that, data will go
through data preprocessing such as normalization,
standardization, missing data, or noise filtering. Next, the
data will be input to the selected data-driven model as the
representation of normal events and testing with faulty
events. After that, determination of upper and lower
thresholds will be calculated based on the Gaussian
distribution assumption with a decision boundary of u+3c
[13]. Fig. 1 shows the fault detection data-driven approach
in general.

B. Data collection stage: A Three-Tank System

The three-tank model that we used was referred to [15]
as shown in Fig. 2. We extend the demonstration in [15]
that focuses on the model-based FD method into a data-
driven approach. We also further extend from the previous
study by adding the noise signal into the system to ensure
the collected data closely follow real-time industrial plant
conditions. The three-tank system can be considered as a
non-linear, multivariable, and time-series system that
aligns with present industrial process plants. The normal
and faulty dataset of the three-tank water level signal was
generated based on the mathematical model of the three-
tank system equations (6), (7), and (8) in the MATLAB
environment as a representation of the real-time tank
system in the manufacturing sector.
The linear control system state variables:

X(t) = AX(t) + BU(t) (1)
Y(6) = CX(t) 2

The input variables, U:
UT =W w]"T=[qn 9q]" (3)
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Fig. 1. Overview of the data-driven fault detection approach.
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where S; (i = 1, 2, 3) denotes the cross-section areas of the
three-tank. The parameters value in the model as per listed
in Table 111 [15] at appendix.

Fig. 3 shows the Simulink MATLAB model based on
the mathematical model of three-tank system. There are

.

also eleven (11) switches labelled as P1 to P3 for abrupt
disturbances, L1 to L3 for leakages, S1 to S3 for sensor
faults, and B1 and B2 for pipe blockages at the respective
Tank 1, Tank 2 and Tank 3. The switches were used to
change from normal to faulty state. Five hundred data
(n=500) were generated for each normal and faulty
condition for the system. The parameters value used for
noise, signal generators and gains as listed in Table IV at
appendix.
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Fig. 3. Three-tank system mathematical modelling representation using Simulink MATLAB
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C. Determination of upper and lower boundary using
PCA approach using normal condition dataset.

Principal Component Analysis (PCA) is a well-known
multivariate statistics method for identifying patterns in
datasets as well as for dimensional reductions [16]. The
PCA is able to transform a large dataset to a smaller set of
variables in a linear combination of the original while
retaining as much data variability as possible. This
situation is suitable to be implemented in learning the
normal dataset distribution and measuring the decision
boundary as a threshold range in detecting the faulty
signal.

The collected data, X consists of n number of
observations and p variables with, nxp data matrix. At the
initial stage of implementation PCA approach, the normal
condition data will go through data centering and scaling
as per stated at equation (9) with u is the mean and o is
the standard deviation of the dataset. The MATLAB code
as per shown in Fig. 4.

x=— 9

MATLAB code:

% Calculate mean for each tank
tank_mean = mean(normaldata);
tank_std = std(normaldata);

% Center the data and scale
tank_center = (normaldata -
repmat(tank_mean,[m,1])) ./
repmat(tank_std,[m,1]);

Fig. 4. MATLAB code for centering and scaling
After that compute the covariance matrix, S where m

is mean vector in d-dimension. See equation (10) with
Fig. 5 MATLAB code.

S = Z7l$=1(xk —m)(x, — m)” (10)

MATLAB code:
% Compute covariance matrix for each tank
tank_cov = cov(tank_center);

Fig. 5. MATLAB code for covariance matrix

Followed by eigen vectors or also called principal
components, P = ey, e,,...,e; and corresponding eigen
values, A;,4,,....,A4; from the covariance matrix. The
PCA model were evaluated by using data set x and eigen
vectors matrix P [17] as in equation (11) and the
MATLAB code as in Fig. 6.

£=TPT (11)

ISSN: 2600-7495

MATLAB code:

% Calculate eigenvectors and eigenvalues for
each tank

[tank_eigvecs, tank_eigvals] = eig(tank_cov);

% Project centered data onto PCA space
tank_projected_data = tank_center *
tank_eigvecs;

Fig. 6. MATLAB code for projected data

After that calculate the residual between the scaling
data set x and the PCA projected dataset, X followed by
the squared prediction error (SPE) value [18] as stated at
equation (12) with MATLAB code at Fig. 7.

SPE = |IX; — %|I? (12)

MATLAB code:
% Calculate Residual between x and xbar
res = tank_center - tank_projected_data;

% Calculate squared prediction error (SPE) for
each tank
spe= abs(res.”2);

Fig. 7. MATLAB code for SPE

Lastly, to determine the upper and lower threshold
value With u + 3o threshold cutoff under the assumption
of Gaussian data distribution. The u and o represent the
mean and standard deviation of the distributions and the
MATLAB code as in Fig. 8.

MATLAB code:
% Calculate upper and lower control limit
ucl_tank = mean(spe) + 3*std(spe)

1cl_tank = mean(spe) - 3*std(spe)

elSSN: 2600-9633

Fig. 8. MATLAB code for control limit

In detecting the faulty events, the collected faulty
dataset will go through similar preprocessing approach
which is data centering and scaling based on the mean, u
and standard deviation,o of the normal dataset. After that,
the dataset will go through similar step in PCA which is
determination of covariance, eigen values, data projection
until the calculation of SPE. The calculated upper and
lower control limit in normal condition will be used to
determine whether the signal in normal or faulty
condition.
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I1l. Results & discussion

A. Simulation results for normal conditions from the
Simulink MATLAB

Fig. 9 shows the response from the water tank system
state space mathematical expression that is being
simulated using Simulink MATLAB blocks. The input
water level given to the system is five (5) in unit step with
noise. From the graph, the water level for Tank 1 and Tank
3 is similar and followed the input value with an average
of 5, whereas Tank 2 is below the input value with an
average water tank level of 3.89. Fig. 10, on another hand,
shows the SPE value after PCA implementation with
residual and threshold determination. For PCA
implementation, we select the data from sample 50 until
500 to include only the steady state response. From the
figure, itis observable that all the SPE values in the normal
dataset lie within the boundary. The value of the upper and
lower threshold for each level is shown in Table 1, and the
line were highlighted using red color in the figure.
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. ) Tank 2
V e ~oaper A e - sy
b~
0
0 100 200 300 400 500
] ) Tank 3 ] )
s :
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0 i
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no of samples,n

Fig. 9. Water level response for three tank system
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Fig. 10. SPE value after PCA implementation with upper and lower
threshold.
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TABLEI
UPPER & LOWER THRESHOLD FOR THE THREE TANK SYSTEM
Upper Control A
Tank Limit (m) Lower Control Limit (m)
1 4.8 -2.8
2 5.9 -35
3 2.9 -1.7

B. Abrupt disturbance

Abrupt disturbance represents a sudden problem while
adding water to the tanks. The water pipe is in an on-and-
off condition, affecting the water level condition. To
simulate this condition, a pulse generator was used in the
Simulink MATLAB, and switches P1, P2, and P3 were
used to enable the situations. Fig. 11 shows the response
of the abrupt changes onto the water level when the switch
P1 was turned on, and Fig. 12 shows the SPE value for this
event. To cover only the steady-state area, all the graphs
for faulty events will consider the samples from 50 until
500. From Fig. 12 it is observable that the PCA is able to
detect the abrupt faulty signal, which at the period of 50 to
100, 150 to 200, 250 to 300, and 350 to 400. We also found
that, even with the switch P1 focusing on impact towards
Tank 1, all the three water tank levels were affected.

Tank 1
=6 ’ ’ I ﬁ
5 . ; .
0 50 100 150 200 250 300 350 400 450
Tank 2
50 1
245 -
4 WWWMMW
0 50 100 150 200 250 300 350 400 450
Tank 3
o
= <l A ﬂ
L 1 L 1 L L L 4
0 50 100 150 200 250 300 350 400 450
no of samples,n
Fig. 11. Water level response after switch P1 was on.
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0 100 ' ' ' ' '
= 50- A
z o0

50 100 150 200 250 300 350 400 450
No of samples(n)

Fig. 12. SPE value for abrupt changes in tank system.
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C. Leakage at water tank system

Leakage at the water tank is important to detect earlier
due to prolonged leakages at tanks, will temper the water
steady-state level as well as waste water resources. This
study replicates the situation by using a signal generation
block in the Simulink MATLAB environment with
switches L1, L2, and L3. Under this section, the discussion
will focus when the switch L1 was turned on and the
response of the water tank level and the SPE value were
illustrated in Fig. 13 and Fig. 14. From Fig. 13 it is found
that all of the tank levels will be affected when leakage
happens at Tank 1 (Switch L1 on). The water level starts
to reduce, from sample n=50 and onwards, showing the
symptom of leakage. This is aligned with findings at Fig.
14 where the SPE value raised above the upper control
limit at the same sample number, indicating that faulty
event occurred at this period of time. This situation also
reflects the PCA’s ability to distinguish between normal

and faulty conditions under leakages events.
Tank 1
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=
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Fig. 13. Water level response when switch L1 was on.
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Fig. 14. SPE value for leakage events at the water tank system.

D. Sensor failure at water tank system

When the level sensor failed to operate as needed, no
level signal was available for the feedback control
mechanism to ensure the water level followed the initial
setting. Furthermore, with a damaged sensor, the person in
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charge is unable to monitor the current situation of the tank
system. Thus, it is crucial to detect this faulty condition in
the process plant system. Sensor faults were presented
with switches S1, S2, and S3 in on and off mode. Fig. 15
and Fig. 16 show the water level signal response as well
as the SPE value when we switch off switch S1. From Fig.
15 it is observed that when the sensor was damaged, no
signal response was able to be captured at Tank 1, whereas
the other two tanks were not affected by this failure. When
evaluating the SPE value at Fig. 16, since the signal value
is zero at Tank 1, the signal was considered as normal
signal since it’s within the boundary. The misdetection
happens under this situation where the PCA approach is
unable to detect this faulty event. In contrast, results at
Tank 2 and Tank 3, the SPE value shows a true
interpretation where the signal also remains within the
boundary as known previously; sensor failure at Tank 1
will not affect Tank 2 and Tank 3 water level signal.

Tank 1

1 T T
=05

0 . . . .
0 50 100 150 200 250 300 350 400 450
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5 F T T
4.5}
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0 50 100 150 200 250 300 350 400 450
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67 T T T T T

0 50 100 150 200 250 300 350 400 450
no of samples,n

Fig. 15. Water level response when switch S1 was off.
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Fig. 16. SPE value for sensor failure events at the water tank system.

E. Pipe blockage at water tank system

Pipe blockage events will interrupt the water flow of the
three-tank system. This faulty event was simulated using
a signal generator as well as switches B1 and B2. Fig. 17
and Fig. 18 illustrate the signal condition when the switch
B1 was turned on. From Fig. 17, it is found that, when a
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blockage situation happens at Tank 1, the water level of
Tank 1 increases significantly while Tank 2 and Tank 3
remain unaffected by the situation. Compared with the
SPE value at Fig. 18, Tank 1 has a true fault detection at
sample time of 50 and onwards. However, Tank 2 and
Tank 3 have incorrect fault detection since these two tanks
should remain in normal condition based on Fig. 12. This
is another event where PCA was unable to correctly
distinguish between normal and faulty conditions.

Further analysis was done with the remaining faulty
switch condition and is being interpreted as in Table II.
From the table, it is found that only all leakage faulty
events are correctly detected by the PCA approach. In
contrast, all of the sensor failure events were totally unable
to be detected by the PCA. The other faulty events such as
abrupt fault at P3 condition has a wrong detection as well
as for pipe blockage B1. With this, a total of six (6) faulty
events were successfully detected. while the other five (5)
were wrong detections, making the total of 54.4%
accuracy of fault detection using the PCA approach. The
reason behind the low accuracy of the PCA approach is
due to the PCA projection being in linear condition only
(see equation (11)), and the time series or temporal
learning was not included when applying this method
[19]-[20].

TABLEI
FAULT DETECTION PERFORMANCE

Al faults are correctly
detected using PCA

Faulty Condition

approach.
Abrupt, P1 True
Abrupt, P2 True
Abrupt, P3 False
Leakage, L1 True
Leakage, L2 True
Leakage, L3 True
Sensor Failure, S1 False
Sensor Failure, S2 False
Sensor Failure, S3 False
Pipe Blockage, B1 False
Pipe Blockage, B2 True

Total of ‘True’ detections 6/11 (54.5%)
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— 7 I o
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5 . . . . . . . ;
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0 50 100 150 200 250 300 350 400 450
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6 E T T T T T
2 .
= 5|
0 50 100 150 200 250 300 350 400 450

no of samples,n

Fig. 17. Water level response when switch B1 was on.
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Fig. 18.SPE value for pipe blockage faulty events at the water tank
system.

IVV. Conclusion

This study focuses on the implementation of a data-
driven fault detection approach using Simulink &
MATLAB with the motivation to provide an initial insight
for the undergraduate and postgraduate students. The
three-tank system is used as an example of the real process
plant signal conditions where eleven switches are used to
represent eleven types of faulty conditions.

In the first stage, the data collection was conducted
based on the three-tank system state-space representation
in the SIMULINK environment. Later, the normal dataset
will go through PCA method to calculate the upper and
lower control limits. After that, based on the faulty dataset,
the signal condition was observed, and the performance of
the PCA fault detection approach was calculated. From the
observation, we conclude that the PCA only able to detect
six out of eleven faulty condition which makes the
detection performance 54.4%. Further study is needed to
improve the detection process, either in more reliable
control limit determination or the data-driven method
itself.

Appendix
TABLE 11l
THREE-TANK SYSTEM PARAMETER
S51(m?) Sy(m?) S3(m?)
7.07e~* 1.3e73 491e™*
R, R, R,
(sec/m?) (sec/m?) (sec/m?)
1.74e* 1.0e* 2.33e*
TABLE IV
SIMULINK MATLAB PARAMETER SETTING
Noise 1 & 2 Impulse Fault Leakage
Generator Generator
Variance: 0.5, Amplitude: 100, Step time: 20
Sample time: Period:20s, Pulse Final value:
0.01s width: 2%, Phase 200
delay: 5s
Gain Gain 1 Gain 2
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7.07*10"-4 3900 1.724*10M
Gain4 Gain 5 Gain 6
1.3*107-3 10N 2.3351*10"4
Gain 8 Gain 9 Gain 10
3900 4,91*10"-4 100
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