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Abstract –Precise and efficient fault management are essential in today's industrial environment 

to avoid downtime and monetary losses. Any faulty events could affect factory process flow as well 

as product quality. Recently, due to the advancement in signal monitoring with cloud data storage, 

fault detection approach has changed from a model-based into to a data-driven approach. The main 
goal of this study is to provide an initial insight of the data-driven fault detection approach focusing 

on undergraduate or postgraduate students, including practitioners that are just new in this area. 

At the first stage, the data generation and collection approach are described with one process plant 

example, namely; the three-tank system. Later, detailed principal component analysis (PCA) and 

threshold determination are explained using normal datasets. After that, the faulty dataset is used 

to determine the performance of the PCA approach. It is found that the PCA approach is only able 

to detect six out of eleven faulty conditions, which results in 54.4% of the fault detection 

performance. 
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I. Introduction 

Efficient system operation is crucial for optimizing 

production efficiency and avoiding financial losses in the 

field of process engineering.  A fault detection (FD) 

system is essential to ensure the continuous and reliable 

operation at the industrial plant. For example, sensor 

failures unable to anticipate disruptions can have a domino 

effect, such as resulting machine breakdown, interrupted 

process flow, and consequently increased corrective costs 

to fix the damaged components. The situation can escalate 

until jeopardizing personnel safety and compromising the 

surrounding environment [1]. Thus, adopting FD 

approach in monitoring process plants becomes a 

noteworthy aspect in large-scale manufacturing systems 

[2].  

Fault detection entails identifying abnormalities or 

deviations from normal system behavior. These tasks are 

the central focus in the preventive maintenance paradigm 

[3], which allows proactive interventions to correct 

problems before they become serious. In other words, FD 

has the ability in early detection of faults while the plant 

is still operating in a controllable region, which can help 

to avoid abnormal event progression.  

 Moving towards the digitalization era, the data-

driven technique has been seen emerging in the study of 

FD. Statistical or machine learning methods such as PCA, 

Independent Component Analysis (ICA), Partial Least 

Square (PLS) and Support Vector Machine (SVM) were 

used in monitoring the process plant system [4]-[5] . At 

the same time, there are also artificial intelligence 

approaches such as autoencoder (AE) [6]-[7], long short-

term memory (LSTM)[8]-[9], and convolutional Neural 

Networks (CNN) [10]-[11] that utilize the historical data 

in predicting faulty events in manufacturing systems.  

Despite the importance of fault detection in the 

industrial systems, as well as the vast the data-driven 

methods, the concept behind data-driven approach in FD 

is less exposed in both undergraduate-level and 

postgraduate studies. Thus, the main goal of this paper is 
to provide theoretical insight with a simulation-based 

validation of the FD concept in engineering systems using 

a data-driven approach as an introduction to those who just 

started in the data-driven FD area of study.  The 
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framework of the data-driven approach will be discussed, 

and the concept of FD using PCA will be further explained 

throughout this paper. 

II. Methodology 

A. Basic overview of data-driven fault detection 

approach in engineering system 

The data-driven approach starts with data collection of 

normal and faulty conditions from the industrial system. 

Recently, this stage has become handy due to the Internet 

of Things (IOT) technology, SCADA, and cloud 

computing that enable continuous process monitoring and 

online data storage [12]-[14]. After that, data will go 

through data preprocessing such as normalization, 
standardization, missing data, or noise filtering. Next, the 

data will be input to the selected data-driven model as the 

representation of normal events and testing with faulty 

events. After that, determination of upper and lower 

thresholds will be calculated based on the Gaussian 

distribution assumption with a decision boundary of μ±3σ 

[13]. Fig. 1 shows the fault detection data-driven approach 

in general. 

B. Data collection stage: A Three-Tank System 

The three-tank model that we used was referred to [15] 

as shown in Fig. 2. We extend the demonstration in [15] 

that focuses on the model-based FD method into a data-
driven approach. We also further extend from the previous 

study by adding the noise signal into the system to ensure 

the collected data closely follow real-time industrial plant 

conditions. The three-tank system can be considered as a 

non-linear, multivariable, and time-series system that 

aligns with present industrial process plants. The normal 

and faulty dataset of the three-tank water level signal was 

generated based on the mathematical model of the three-

tank system equations (6), (7), and (8) in the MATLAB 

environment as a representation of the real-time tank 

system in the manufacturing sector. 
The linear control system state variables: 

 

                     𝑋̇(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑈(𝑡)                           (1) 

                            𝑌(𝑡) = 𝐶𝑋(𝑡)                                    (2) 

 

The input variables, 𝑈: 
 

                 𝑈𝑇 = [𝑢1 𝑢2]𝑇 = [𝑞𝑖1 𝑞𝑖2]𝑇                   (3) 

 

 

 

        
 

Fig. 1. Overview of the data-driven fault detection approach. 

 

 

 
 

Fig. 2. Three-tank system 

 

 

State variables and observed variables: 
 

           𝑋𝑇 = [𝑥1 𝑥2 𝑥3]𝑇 = [ℎ1 ℎ2 ℎ3]
𝑇             (4) 

           𝑌𝑇 = [𝑦1 𝑦2 𝑦3]𝑇 = [ℎ1 ℎ2 ℎ3]
𝑇              (5) 

 
 

Matrix 𝐴, 𝐵, and 𝐶 are 
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                             𝐵 = [
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0
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]                                      (7) 

Data collection

Pre-processing 

or noise filtering 

Data-driven Model 

(PCA)

Normal threshold upper and lower 
boundary (Gaussion distribution 

with boundary, 𝜇 ± 3𝜎 )

Faulty events

𝜇 + 3𝜎 ≥ 𝑥 ≥ 𝜇 + 3𝜎
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                            𝐶 = [
1 0 0
0 1 0
0 0 1

]                                  (8) 

 

where 𝑆𝑖 (i = 1, 2, 3) denotes the cross-section areas of the 

three-tank. The parameters value in the model as per listed 

in Table III  [15] at appendix.  

Fig. 3 shows the Simulink MATLAB model based on 

the mathematical model of three-tank system. There are 

also eleven (11) switches labelled as P1 to P3 for abrupt 

disturbances, L1 to L3 for leakages, S1 to S3 for sensor 

faults, and B1 and B2 for pipe blockages at the respective 

Tank 1, Tank 2 and Tank 3. The switches were used to 

change from normal to faulty state. Five hundred data 

(n=500) were generated for each normal and faulty 

condition for the system. The parameters value used for 
noise, signal generators and gains as listed in Table IV at 

appendix. 

 

 
Fig. 3. Three-tank system mathematical modelling representation using Simulink MATLAB 
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C. Determination of upper and lower boundary using 

PCA approach using normal condition dataset. 

Principal Component Analysis (PCA) is a well-known  

multivariate statistics method for identifying patterns in 

datasets as well as for dimensional reductions [16]. The 

PCA is able to transform a large dataset to a smaller set of 

variables in a linear combination of the original while 

retaining as much data variability as possible. This 

situation is suitable to be implemented in learning the 

normal dataset distribution and measuring the decision 

boundary as a threshold range in detecting the faulty 

signal.  

The collected data, X consists of n number of 

observations and p variables with, n×p data matrix. At the 

initial stage of implementation PCA approach, the normal 

condition data will go through data centering and scaling 

as per stated at equation (9) with 𝜇 is the mean and 𝜎 is 
the standard deviation of the dataset. The MATLAB code 

as per shown in Fig. 4.  

 

                                       𝑥 =
𝑋−𝜇

𝜎
                                  (9) 

 

 
 

Fig. 4. MATLAB code for centering and scaling 

 

After that compute the covariance matrix, 𝑆 where m 

is mean vector in d-dimension. See equation (10) with 

Fig. 5 MATLAB code.  

 

                      𝑆 = ∑ (𝑥𝑘 − 𝑚)(𝑥𝑘 − 𝑚)𝑇𝑛
𝑘=1                (10) 

 

 
 

Fig. 5. MATLAB code for covariance matrix 

 

Followed by eigen vectors or also called principal 

components, 𝑃 = 𝑒1, 𝑒2,… , 𝑒𝑑 and corresponding eigen 

values, 𝜆1, 𝜆2,…., 𝜆𝑑 from the covariance matrix. The 

PCA model were evaluated by using data set 𝑥 and eigen 

vectors matrix 𝑃 [17] as in equation (11) and the 

MATLAB code as in Fig. 6.  

                                     𝑥 = 𝑇𝑃𝑇                                 (11) 

 

 
 

Fig. 6. MATLAB code for projected data 

 

After that calculate the residual between the scaling 

data set 𝑥 and the PCA projected dataset, 𝑥 followed by 

the squared prediction error (SPE) value [18] as stated at 

equation (12) with MATLAB code at Fig. 7. 

 

                             𝑆𝑃𝐸 = ‖𝑋𝑖 − 𝑥𝑖̂‖
2                  (12) 

 

 
 

Fig. 7. MATLAB code for SPE 

 

Lastly, to determine the upper and lower threshold 

value with  𝜇 ± 3𝜎 threshold cutoff under the assumption 

of Gaussian data distribution. The 𝜇 and 𝜎 represent the 

mean and standard deviation of the distributions and the 

MATLAB code as in Fig. 8.   

 

 
 

Fig. 8. MATLAB code for control limit 

 

In detecting the faulty events, the collected faulty 
dataset will go through similar preprocessing approach 

which is data centering and scaling based on the mean, 𝜇 

and standard deviation,𝜎 of the normal dataset. After that, 

the dataset will go through similar step in PCA which is 

determination of covariance, eigen values, data projection 

until the calculation of SPE. The calculated upper and 

lower control limit in normal condition will be used to 

determine whether the signal in normal or faulty 

condition. 

 
 

MATLAB code: 

% Calculate mean for each tank 
tank_mean = mean(normaldata); 
tank_std = std(normaldata); 
 
% Center the data and scale 
tank_center = (normaldata - 
repmat(tank_mean,[m,1])) ./ 
repmat(tank_std,[m,1]); 

MATLAB code: 

% Compute covariance matrix for each tank 
tank_cov = cov(tank_center); 

MATLAB code: 

% Calculate eigenvectors and eigenvalues for 
each tank 
[tank_eigvecs, tank_eigvals] = eig(tank_cov); 
 
% Project centered data onto PCA space 
tank_projected_data = tank_center * 
tank_eigvecs; 

MATLAB code: 

% Calculate Residual between x and xbar 
res = tank_center - tank_projected_data; 
 
% Calculate squared prediction error (SPE) for 
each tank 
spe= abs(res.^2); 
 

MATLAB code: 

% Calculate upper and lower control limit 
ucl_tank = mean(spe) + 3*std(spe) 
lcl_tank = mean(spe) - 3*std(spe) 
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III. Results & discussion 

A. Simulation results for normal conditions from the 

Simulink MATLAB 

Fig. 9 shows the response from the water tank system 

state space mathematical expression that is being 

simulated using Simulink MATLAB blocks. The input 

water level given to the system is five (5) in unit step with 

noise. From the graph, the water level for Tank 1 and Tank 

3 is similar and followed the input value with an average 

of 5, whereas Tank 2 is below the input value with an 

average water tank level of 3.89. Fig. 10, on another hand, 

shows the SPE value after PCA implementation with 

residual and threshold determination. For PCA 
implementation, we select the data from sample 50 until 

500 to include only the steady state response. From the 

figure, it is observable that all the SPE values in the normal 

dataset lie within the boundary. The value of the upper and 

lower threshold for each level is shown in Table 1, and the 

line were highlighted using red color in the figure.  

 

 
 

Fig. 9. Water level response for three tank system 

 

 

 
 

Fig. 10. SPE value after PCA implementation with upper and lower 

threshold.  

 

 

TABLE I 

UPPER & LOWER THRESHOLD FOR THE THREE TANK SYSTEM  

Tank 
Upper Control 

Limit (m) 
Lower Control Limit (m) 

1 4.8 -2.8 

2 5.9 -3.5 

3 2.9 -1.7 

B. Abrupt disturbance 

Abrupt disturbance represents a sudden problem while 

adding water to the tanks. The water pipe is in an on-and-

off condition, affecting the water level condition. To 

simulate this condition, a pulse generator was used in the 

Simulink MATLAB, and switches P1, P2, and P3 were 

used to enable the situations. Fig. 11 shows the response 
of the abrupt changes onto the water level when the switch 

P1 was turned on, and Fig. 12 shows the SPE value for this 

event. To cover only the steady-state area, all the graphs 

for faulty events will consider the samples from 50 until 

500. From Fig. 12 it is observable that the PCA is able to 

detect the abrupt faulty signal, which at the period of 50 to 

100, 150 to 200, 250 to 300, and 350 to 400. We also found 

that, even with the switch P1 focusing on impact towards 

Tank 1, all the three water tank levels were affected.  
 

 
 

Fig. 11. Water level response after switch P1 was on.  

 

 
 

Fig. 12. SPE value for abrupt changes in tank system. 
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C. Leakage at water tank system 

Leakage at the water tank is important to detect earlier 

due to prolonged leakages at tanks, will temper the water 

steady-state level as well as waste water resources. This 

study replicates the situation by using a signal generation 

block in the Simulink MATLAB environment with 

switches L1, L2, and L3. Under this section, the discussion 
will focus when the switch L1 was turned on and the 

response of the water tank level and the SPE value were 

illustrated in Fig. 13 and Fig. 14. From Fig. 13 it is found 

that all of the tank levels will be affected when leakage 

happens at Tank 1 (Switch L1 on). The water level starts 

to reduce, from sample n=50 and onwards, showing the 

symptom of leakage. This is aligned with findings at Fig. 

14 where the SPE value raised above the upper control 

limit at the same sample number, indicating that faulty 

event occurred at this period of time. This situation also 

reflects the PCA’s ability to distinguish between normal 
and faulty conditions under leakages events.  

 
 

Fig. 13. Water level response when switch L1 was on. 

 

 
 

Fig. 14. SPE value for leakage events at the water tank system. 

 

D. Sensor failure at water tank system 

When the level sensor failed to operate as needed, no 

level signal was available for the feedback control 

mechanism to ensure the water level followed the initial 

setting. Furthermore, with a damaged sensor, the person in 

charge is unable to monitor the current situation of the tank 

system. Thus, it is crucial to detect this faulty condition in 

the process plant system. Sensor faults were presented 

with switches S1, S2, and S3 in on and off mode. Fig. 15 

and Fig. 16 show the water level signal response as well 

as the SPE value when we switch off switch S1. From Fig. 

15 it is observed that when the sensor was damaged, no 
signal response was able to be captured at Tank 1, whereas 

the other two tanks were not affected by this failure. When 

evaluating the SPE value at Fig. 16, since the signal value 

is zero at Tank 1, the signal was considered as normal 

signal since it’s within the boundary. The misdetection 

happens under this situation where the PCA approach is 

unable to detect this faulty event. In contrast, results at 

Tank 2 and Tank 3, the SPE value shows a true 

interpretation where the signal also remains within the 

boundary as known previously; sensor failure at Tank 1 

will not affect Tank 2 and Tank 3 water level signal.   
 

 
 

Fig. 15. Water level response when switch S1 was off. 

 

 
 

Fig. 16. SPE value for sensor failure events at the water tank system. 

 

E. Pipe blockage at water tank system 

Pipe blockage events will interrupt the water flow of the 

three-tank system. This faulty event was simulated using 

a signal generator as well as switches B1 and B2. Fig. 17 

and Fig. 18 illustrate the signal condition when the switch 

B1 was turned on. From Fig. 17, it is found that, when a 
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blockage situation happens at Tank 1, the water level of 

Tank 1 increases significantly while Tank 2 and Tank 3 

remain unaffected by the situation. Compared with the 

SPE value at Fig. 18, Tank 1 has a true fault detection at 

sample time of 50 and onwards. However, Tank 2 and 

Tank 3 have incorrect fault detection since these two tanks 

should remain in normal condition based on Fig. 12. This 
is another event where PCA was unable to correctly 

distinguish between normal and faulty conditions.  

Further analysis was done with the remaining faulty 

switch condition and is being interpreted as in Table II. 

From the table, it is found that only all leakage faulty 

events are correctly detected by the PCA approach. In 

contrast, all of the sensor failure events were totally unable 

to be detected by the PCA. The other faulty events such as 

abrupt fault at P3 condition has a wrong detection as well 

as for pipe blockage B1. With this, a total of six (6) faulty 

events were successfully detected. while the other five (5) 
were wrong detections, making the total of 54.4% 

accuracy of fault detection using the PCA approach. The 

reason behind the low accuracy of the PCA approach is 

due to the PCA projection being in linear condition only 

(see equation (11)), and the time series or temporal 

learning was not included when applying this method 

[19]-[20].   

 
TABLE II 

FAULT DETECTION PERFORMANCE 

Faulty Condition  

All faults are correctly 

detected using PCA 

approach.  

Abrupt, P1 True 

Abrupt, P2 True 

Abrupt, P3 False 

Leakage, L1 True 

Leakage, L2 True 

Leakage, L3 True 

Sensor Failure, S1 False 

Sensor Failure, S2 False 

Sensor Failure, S3 False 

Pipe Blockage, B1 False 

Pipe Blockage, B2 True 

Total of ‘True’ detections 6/11 (54.5%) 

 

 
 

Fig. 17. Water level response when switch B1 was on. 

 

 

 
 

Fig. 18.SPE value for pipe blockage faulty events at the water tank 

system. 

IV. Conclusion 

This study focuses on the implementation of a data-

driven fault detection approach using Simulink & 

MATLAB with the motivation to provide an initial insight 

for the undergraduate and postgraduate students. The 

three-tank system is used as an example of the real process 

plant signal conditions where eleven switches are used to 

represent eleven types of faulty conditions.     

In the first stage, the data collection was conducted 

based on the three-tank system state-space representation 

in the SIMULINK environment. Later, the normal dataset 

will go through PCA method to calculate the upper and 

lower control limits. After that, based on the faulty dataset, 

the signal condition was observed, and the performance of 

the PCA fault detection approach was calculated. From the 

observation, we conclude that the PCA only able to detect 

six out of eleven faulty condition which makes the 

detection performance 54.4%. Further study is needed to 

improve the detection process, either in more reliable 

control limit determination or the data-driven method 

itself.  

Appendix 

TABLE III 

THREE-TANK SYSTEM PARAMETER 

𝑆1(𝑚
2) 𝑆2(𝑚

2) 𝑆3(𝑚
2) 

7.07𝑒−4 1.3𝑒−3 4.91𝑒−4 

𝑅1  

(𝑠𝑒𝑐/𝑚2) 
𝑅2 

(𝑠𝑒𝑐/𝑚2) 

𝑅3 

(𝑠𝑒𝑐/𝑚2) 
1.74𝑒4 1.0𝑒4 2.33𝑒4 

  

TABLE IV 

SIMULINK MATLAB PARAMETER SETTING 

Noise 1 & 2 Impulse Fault 

Generator 

Leakage 

Generator 

Variance: 0.5, 

Sample time: 

0.01s 

Amplitude: 100, 

Period:20s, Pulse 

width: 2%, Phase 

delay: 5s 

Step time: 20 

Final value: 

200 

Gain Gain 1 Gain 2 
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7.07*10^-4 3900 1.724*10^4 

Gain 4 Gain 5 Gain 6 

1.3*10^-3 10^4 2.3351*10^4 

Gain 8 Gain 9 Gain 10 

3900 4.91*10^-4 100 
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