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Abstract – In this paper, unbalanced three-phase fault in transmission lines is considered with 
respect to estimating the state of power system after a fault occurs at different buses. Faults such 
as a single-line-to-ground (SLG), line-to-line (LL) and double-line-to-ground (DLG) affect the 
bus system that is connected along with the transmission line. MATLAB software was employed 
in which unbalanced fault programs based on the Symmetrical Component method to determine 
the voltage magnitudes, line current magnitude, total fault current, real and reactive power at 
Phase A, Phase B and also on phase C for the different bus lines. The unbalanced fault programs 
are executed using a Newton Raphson based power flow program for the standard IEEE 14, 
IEEE 26 and IEEE 30 bus systems. The obtained results show that the single line to ground fault 
is the most severe kind for IEEE 14 bus system, while for IEEE 26 and IEEE 30 bus system, the 
most severe fault is line to line fault. This finding is crucial for evaluating the reliability and 
stability of power transmission lines. 
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I. Introduction 

The electric power generated in the power plant will 
be raised in terms of voltage level with the support of the 
transformer before the electricity is transmitted and 
distributed with large, interconnected power systems. 
Transmission lines are essential parts of modern power 
networks. They serve an important role in distributing 
electricity, and faults in these lines can cause substantial 
disruptions in power supply [1]. High voltage is 
delivered in the transmission line to minimize 
transmission losses and thus be able to ensure 
continuous power supply in power systems without 
problems [2]. Faults that can happen on any 
transmission line are known as balanced faults and 
unbalanced faults. Three-phase balanced faults and 
unbalanced faults are two types of power system faults. 
Unbalanced faults on electricity transmission lines can 
be classified into three types: single line-to-ground, line-
to-line, and double line-to-ground [3]. An unbalanced 
fault is known as the most common fault that happens in 
transmission lines [4]. Understanding how three-phase 
unbalance affects distribution equipment losses is 

essential for ensuring reliable and efficient operation of 
power distribution networks. Therefore, fault analysis is 
one of the proper ways to evaluate the fault currents and 
voltages in power systems. The fault analysis results are 
important for the power system design, the protection 
system setting, and power quality considerations [5]. 
Faults in transmission lines are caused by circuit failures 
that disrupt the regular flow of current. A short circuit or 
open circuit fault creates an undesired conducting route, 
preventing current flow [6]. Faults can cause major 
interruptions, thus rapid detection and classification is 
critical for effective management [7]. 

The symmetrical component method continues to be a 
crucial analytical tool for managing unbalanced faults in 
electrical power systems. Proper analyses of unbalanced 
three-phase fault systems need to be done to understand 
the power quality of the power system after the fault 
occurs.  

This study will analyze the performance in term of 
voltage magnitude and current magnitude in each phase 
under unbalanced fault condition. Other than that, it 
focuses on obtaining the total fault current; bus voltages 
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I. Introduction 
In the realm of contemporary energy management, the 

incorporation of VPPs signifies a fundamental change 
towards a more dynamic and robust grid infrastructure. 
VPPs involve a wide range of energy resources and 
technologies, such as PV systems [1], ESS [1] – [3], 
electric vehicles (EVs) [1],[4] – [7], and HVAC units 
[1],[8] – [9]. These components come together to create an 
advanced energy ecosystem capable of producing, storing, 
and distributing electricity in a highly efficient and 
adaptable manner. The incorporation of VPPs into 
established grid networks, like the IEEE 14 bus system, 
shows great potential for improving grid stability, 
reliability, and sustainability [1],[10] – [11]. 

At the core of VPP optimization is the utilization of 
sophisticated adaptive algorithms, among which adaptive 
control strategy stands out as a key tool for optimizing 
multi-objective functions [1],[12] – [13]. Adaptive control 
strategies empower VPPs to dynamically adapt energy 
generation, storage, and consumption tactics in 
accordance with changing grid conditions and user 
requirements. Through the reduction of operational 
expenses, maximization of power utilization, and 
mitigation of peak demand, adaptive control strategies 
boost the overall efficiency and efficacy of VPP 

operations. Furthermore, the incorporation of VPPs with 
adaptive [1],[13] aids in effectively coordinating various 
energy resources and technologies, ultimately enhancing 
grid flexibility and resilience. By employing these 
strategies and techniques, VPPs can dynamically adjust to 
fluctuations in grid conditions, minimize possible 
disruptions, and efficiently manage resource distribution 
in a timely manner. 

In this all-encompassing investigation, we explore the 
complex interaction among VPP integration, employing 
adaptive control strategies, and grid management 
strategies. By conducting a thorough analysis of case 
studies and simulation findings, our goal is to clarify the 
transformative capacity of these technologies in shaping a 
sustainable and adaptable energy environment. Through 
an examination of the synergies between VPPs, adaptive 
control strategies, and grid infrastructure, our aim is to 
provide insights into the obstacles and possibilities linked 
to contemporary energy management practices, while also 
laying the groundwork for the advancement of more 
robust, effective, and environmentally friendly energy 
systems. 
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generation, storage, and consumption tactics in 
accordance with changing grid conditions and user 
requirements. Through the reduction of operational 
expenses, maximization of power utilization, and 
mitigation of peak demand, adaptive control strategies 
boost the overall efficiency and efficacy of VPP 

operations. Furthermore, the incorporation of VPPs with 
adaptive [1],[13] aids in effectively coordinating various 
energy resources and technologies, ultimately enhancing 
grid flexibility and resilience. By employing these 
strategies and techniques, VPPs can dynamically adjust to 
fluctuations in grid conditions, minimize possible 
disruptions, and efficiently manage resource distribution 
in a timely manner. 

In this all-encompassing investigation, we explore the 
complex interaction among VPP integration, employing 
adaptive control strategies, and grid management 
strategies. By conducting a thorough analysis of case 
studies and simulation findings, our goal is to clarify the 
transformative capacity of these technologies in shaping a 
sustainable and adaptable energy environment. Through 
an examination of the synergies between VPPs, adaptive 
control strategies, and grid infrastructure, our aim is to 
provide insights into the obstacles and possibilities linked 
to contemporary energy management practices, while also 
laying the groundwork for the advancement of more 
robust, effective, and environmentally friendly energy 
systems. 
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II. System Model 
System modeling of VPP comprised of PV system, 

ESS, EVs and heat, ventilation and air conditioning 
(HVAC) and integration of VPP into electrical grid system 
with 14 buses.   

A. Modeling of PV system 

The PV system, which is considered a fundamental 
component of renewable energy, functions by producing 
electricity through the utilization of sunlight. In the 
context of VPPs, which serve as a collective platform for 
various distributed PV systems, there is an effective 
optimization of grid stability and reliability. Moreover, the 
PV systems play a significant role in the sustainable 
production of energy by efficiently harnessing solar 
energy, thus reducing the reliance on fossil fuels and 
effectively mitigating the environmental impacts 
associated with them. Within the framework of a VPP, the 
PV model takes into account a multitude of factors, 
including solar irradiance, temperature effects, shading 
analysis, inverter efficiency, and uncertainties as given by 
equation (1). Through the consideration and integration of 
these variables, the PV model is able to accurately predict 
the power output of the PV system, thereby facilitating its 
optimal integration within VPP frameworks. This optimal 
integration ultimately leads to enhanced management of 
renewable energy and a greater level of stability within the 
grid [1]. 

 
𝑃𝑃(𝑡𝑡)𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃(𝑡𝑡)𝑚𝑚𝑚𝑚𝑚𝑚[1 − 𝛽𝛽𝑇𝑇 (𝑇𝑇𝑡𝑡 − 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆)] × (1 −
𝛼𝛼𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) × ɳ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝐺𝐺(𝑡𝑡) × 𝜖𝜖(𝑡𝑡)                               (1) 
 
where, P(t)max= maximum power of PV panel (in Watt), 
βT= Temperature coefficient, TSTC= Standard test 
condition temperature, αshading= Shading effect, ɳinverter= 
Inverter’s efficiency, G(t)= Solar Irradiance, T(t)= 
Ambient temperature, ε(t) = Stochastic uncertainty. 

B. Modeling of ESS 

 ESS have a crucial and indispensable function in the 
realm of VPPs, as they enable the seamless and effective 
integration of renewable energy sources such as solar 
power. The ability to store surplus energy during times of 
low demand and subsequently supply it during periods of 
high demand is a vital aspect of ESS, as it greatly 
contributes to the overall stability and reliability of the 
power grid. Moreover, the inclusion of energy storage 
systems within VPPs not only enhances grid stability but 
also facilitates the optimal utilization of renewable 
resources, ensuring that they are harnessed to their fullest 
potential for the benefit of the entire system. The dynamics 
of an energy storage system within a VPP are effectively 
captured and represented by the equations (2) and (3), 
which play a crucial role in understanding and managing 

the system's behavior [2-3]. The equation (2) takes into 
account various factors such as charging/discharging 
efficiencies, operational costs, and stochastic 
uncertainties, all of which have a significant impact on the 
system's state of charge over time. By incorporating these 
elements, the equation (3) offers a comprehensive 
framework for optimizing energy storage operations, 
thereby contributing to the overall enhancement of grid 
stability and the efficient utilization of renewable energy 
within Virtual Power Plants. In essence, it serves as a 
fundamental pillar in achieving the goals of maximizing 
the potential of energy storage systems and promoting 
sustainable energy practices in VPPs [1].  

 
𝑑𝑑𝑑𝑑(𝑡𝑡)𝐸𝐸𝐸𝐸𝐸𝐸

𝑑𝑑𝑑𝑑 = ɳ𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑃𝑃(𝑡𝑡)𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 1
ɳ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

×
𝑃𝑃(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎                                    (2) 

𝐸𝐸(𝑡𝑡 + 𝑑𝑑𝑑𝑑)𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸(𝑡𝑡)𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑑𝑑𝑑𝑑(𝑡𝑡)𝐸𝐸𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑  × 𝑑𝑑𝑑𝑑 + 𝜀𝜀(𝑡𝑡)          (3) 

 
where, 𝑑𝑑𝑑𝑑(𝑡𝑡)𝐸𝐸𝐸𝐸𝐸𝐸

𝑑𝑑𝑑𝑑  = change of SOC with  respect to time t, 
ɳcharging= charging efficiency, ɳdischarging= Discharging 
efficiency, P(t)charging= charging power at time t, 
P(t)discharging= Discharging power at time t, 𝜀𝜀(𝑡𝑡)= stochastic 
uncertainty in SOC dynamics. 

C. System model of EVs 

EVs have a crucial and indispensable role to play in the 
functioning of VPPs, as they provide immense value in 
terms of grid flexibility and demand-side management. By 
incorporating EVs into the power grid, a multitude of 
benefits become accessible, including the ability to 
dynamically balance the load, mitigate peak energy 
demand, and enhance storage capacity. Moreover, the 
integration of EVs represents a significant step towards the 
integration of renewable energy sources, as they 
contribute to the seamless assimilation of these sources 
into the grid. In doing so, they not only bolster grid 
stability but also pave the way for optimal cost 
management, thereby fostering the development of 
sustainable energy systems that are capable of effectively 
reducing carbon emissions. Equation (4) is used to 
calculate the charging power of EVs with power 
fluctuation δ(t)charging and stochastic uncertainty ε(t)charging. 
Equation (5) is used to calculate the discharging power of 
EVs with power fluctuation δ(t)discharging and stochastic 
uncertainty ε(t)discharging while equation (6) is used to show 
the dynamic nature of SOC of the batteries of EVs. The 
equations from (4) – (6) accurately represent the dynamic 
behavior of EVs in a VPP, are crucial for analyzing the 
interactions between EVs and the grid [4] – [7]. They 
consider uncertainties, power fluctuations, and operational 
constraints, enabling the effective integration of EVs into 
grid operations for optimized renewable energy utilization 
and minimized disruptions. These equations also provide 
insights into the impact of EV charging and discharging 
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patterns on grid performance, making them valuable for 
policymakers, grid operators, and researchers in 
developing strategies for enhanced EV integration and 
utilization within grid operations, advancing sustainable 
energy and smart grid technologies [1]. 
 

𝑃𝑃(𝑡𝑡)𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝐸𝐸𝐸𝐸 = [𝑃𝑃𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑚𝑚𝑚𝑚𝑚𝑚 , (𝑃𝑃(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −
𝑃𝑃(𝑡𝑡)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)]  + 𝜀𝜀(𝑡𝑡)𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛿𝛿(𝑡𝑡)𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎         (4) 

𝑃𝑃(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝐸𝐸𝐸𝐸 = [𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑚𝑚𝑚𝑚𝑚𝑚 , (𝑃𝑃(𝑡𝑡)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 −
𝑃𝑃(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)] + 𝜀𝜀(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 +

𝛿𝛿(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎            
(5) 

𝐸𝐸(𝑡𝑡 + 𝑑𝑑𝑑𝑑)𝐸𝐸𝐸𝐸 = 𝐸𝐸(𝑡𝑡)𝐸𝐸𝐸𝐸 + (ɳ𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑃𝑃(𝑡𝑡)𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 −
1

ɳ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
× 𝑃𝑃(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ) × 𝑑𝑑𝑑𝑑              (6) 

 
where, 𝑃𝑃(𝑡𝑡)𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐸𝐸𝐸𝐸  = charging power of EVs at time t, 
𝑃𝑃(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐸𝐸𝐸𝐸  = Discharging power if EVs at time t, 
𝐸𝐸(𝑡𝑡)𝐸𝐸𝐸𝐸= state of charge of EVs at time t, 𝐸𝐸(𝑡𝑡 + 𝑑𝑑𝑑𝑑)𝐸𝐸𝐸𝐸= 
Dynamic state of charging of EVs , ɳ𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎= charging 
efficiency of EVs, ɳ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎= Discharging efficiency of 
EVs, 𝜀𝜀(𝑡𝑡)𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎= stochastic uncertainty of charging at 
time t, 𝛿𝛿(𝑡𝑡)𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎= power fluctuation of charging of 
EVs at time t, 𝜀𝜀(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎= Discharging uncertainty at 
time , 𝛿𝛿(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎= power fluctuation of discharging 
of EVs at time t. 

D. Model of HVAC 

 
HVAC systems play a crucial role in VPPs as they are 

essential for maintaining optimal indoor comfort levels 
while simultaneously optimizing energy consumption in 
an efficient manner. These systems are intelligently 
integrated with smart controls, thereby providing demand 
response capabilities that greatly contribute to grid 
stability and effective peak load management. The 
integration of HVACs within VPPs not only enhances the 
overall efficiency of the power plant but also results in 
significant reductions in energy costs and environmental 
impact. Furthermore, the utilization of these systems 
ensures that the comfort and wellbeing of building 
occupants are consistently prioritized and upheld, thereby 
creating a harmonious balance between energy 
optimization and occupant satisfaction. This particular 
model takes into consideration the presence of stochastic 
uncertainties in the power consumption of HVAC 
systems, thereby enabling more precise predictions and 
enhanced management of energy resources within the 
VPP. By doing so, it facilitates the implementation of 
optimized control strategies that aim to maintain optimal 
indoor comfort levels while simultaneously minimizing 
energy costs and the overall impact on the grid. Equation 
(7) is employed to compute the power consumption of the 

HVAC system, while equation (8) is utilized to determine 
the dynamic nature of the indoor temperature within said 
system. Furthermore, equation (9) serves as the threshold 
or limit for power consumption, establishing a benchmark 
that ensures efficient usage of energy [1],[8] – [9]. 

 
𝑃𝑃(𝑡𝑡)𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝛼𝛼 × (𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇(𝑡𝑡)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) + 𝜀𝜀(𝑡𝑡)𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻          (7) 

𝑇𝑇(𝑡𝑡 + 𝑑𝑑𝑑𝑑)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑇𝑇(𝑡𝑡)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽(𝑇𝑇(𝑡𝑡)𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 −
𝑇𝑇(𝑡𝑡)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) × 𝑑𝑑𝑑𝑑                                    (8) 
0 ≤ 𝑃𝑃(𝑡𝑡)𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚                           (9) 

 
where, 𝑃𝑃(𝑡𝑡)𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻= Power consumption by HVAC in time 
t, 𝛼𝛼= coefficient representing efficiency and capacity of 
HVAC, 𝜀𝜀(𝑡𝑡)𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻= Stochastic uncertainty varying with 
time t, 𝑇𝑇(𝑡𝑡)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖= Indoor temperature, 𝑇𝑇(𝑡𝑡)𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜= 
Outdoor temperature, 𝛽𝛽= coefficient representing thermal 
characteristics, 𝑇𝑇(𝑡𝑡 + 𝑑𝑑𝑑𝑑)𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖= Dynamic nature of 
indoor temperature. 

E. Integration of VPP into IEEE 14 bus system 

The incorporation of a VPP that consists of PV systems, 
ESS, EVs, and HVAC units into a 14-bus electrical grid 
system that caters to both commercial and residential loads 
is of immense significance. This integration brings about 
a multitude of benefits by effectively managing and 
harnessing various energy resources, thereby enhancing 
the flexibility, stability, and efficiency of the grid. By 
effectively utilizing renewable energy sources, storage 
capabilities, and demand-side management, the VPP 
optimizes energy consumption, reduces dependency on 
fossil fuels, and effectively addresses grid congestion 
issues. This seamless integration paves the way for the 
establishment of a more sustainable and resilient energy 
infrastructure, which in turn supports the transition 
towards a grid ecosystem that is both cleaner and more 
intelligent [10] – [11]. After integrating VPP into 
electrical grid system, the total power at the bus to which 
VPP is connected, can be calculated by using equation 
(10) [1]. 

 
𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑃𝑃𝑃𝑃𝑃𝑃 + ∆𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸 + ∆𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑃𝑃𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴                       (10) 
 
where, ∆𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑃𝑃𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , and ∆𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑃𝑃𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. The assessment of the Impact 
Analysis involves the examination and evaluation of the 
alterations in power distribution at individual electrical 
substations before and after the integration of the VPP. 
This evaluation is denoted as  ∆𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵

𝑉𝑉𝑉𝑉𝑉𝑉. Equation (11) is 
used to show the impact analysis of the integration of VPP 
into electrical grid system [1]. 
 

∆𝑃𝑃𝐵𝐵𝑢𝑢𝑢𝑢
𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏

𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏
𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑉𝑉𝑉𝑉𝑉𝑉                        (11) 

 



ISSN: 2600 - 7495         eISSN: 2600-9633         IJEEAS,   Vol. 8,   No. 1,   April 2025

International Journal of Electrical Engineering and Applied Sciences

4

 
International Journal of Electrical Engineering and Applied Sciences 
 

 
 

ISSN: 2600-7495       eISSN: 2600-9633        IJEEAS Vol. 8, No. 1, April 2025 
 

 

Quantifying these changes is essential for comprehending 
the impact of VPP on electrical grid dynamics and 
optimizing grid operations in changing energy landscapes.  

III. Evaluation of Virtual power plant 
The evaluation of VPP comprised of the evaluation if 

multi-objective function optimization adaptive control 
strategies, different constraints used by VPP, evaluation 
metrics and novelty of the research study.  

A. Multi-objectives function 

In order to apply adaptive control strategies on virtual 
power plant when integrated it into electrical grid system, 
multi-objective function would be used to minimize the 
total cost, maximize the power utilization, reducing 
maximum demand, and enhancing grid stability and 
reliability [1], [12] – [13]. The multi-objective function J 
can be defined as illustrated by equation (12). 

 
𝐽𝐽 = 𝑤𝑤1 × 𝐶𝐶 + 𝑤𝑤2 × 𝑈𝑈𝑝𝑝 − 𝑤𝑤3 × 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑤𝑤4 × 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 −

𝑤𝑤5 × 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔                                               (12) 
 

where, J is the objective function, w1, w2, w3, w4, and w5 
are the weighting factors and used to show the importance 
of each objective,  C is the total cost of VPP operation and 
it is actually the sum of generation cost CG(t) including 
fixed generation Cfix(t) and variable generation Cvar(t) cost 
at a particular period of time t as given by equation (13), 
total energy storage cost CES(t) including operational cost 
Cop(t) and degradation cost Cdeg(t) at particular duration of 
time t as given by equation (14), Total energy distribution 
cost Cdist(t) including total cost of transmission losses 
Closs(t) at a particular period of time as given by equation 
(15) and the cost associated with managing uncertainties 
Cuncert(t) in generation Cres(t) and forecasting Cforcast(t) as 
given by equation (16) [1]. 

 
𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) = ∑ ( 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓

𝑖𝑖 (𝑡𝑡) + 𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣
𝑖𝑖 (𝑡𝑡))𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔

𝑖𝑖=1                          (13) 
𝐶𝐶𝐸𝐸𝐸𝐸(𝑡𝑡) = ∑ ( 𝐶𝐶𝑜𝑜𝑜𝑜

𝑗𝑗 (𝑡𝑡) + 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑
𝑗𝑗𝑁𝑁𝐸𝐸𝐸𝐸

𝑗𝑗=1 (𝑡𝑡))                            (14) 
𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) = ∑ ( 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑘𝑘 (𝑡𝑡)) 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘=1                                        (15) 

𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡) = ∑ ( 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
𝑙𝑙 (𝑡𝑡) + 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑙𝑙 (𝑡𝑡))           𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑙𝑙=1 (16) 

 
By combining equation (13), (14), (15) and (16), we can 
get total cost of VPP operation as shown by equation (17). 
Where Ngen is the total number of generation units, NES is 
the total number of storage units, Ndist is the total number 
of distribution units, and Nuncert is the total number of units 
associated with uncertainty cost.  
 

𝐶𝐶 = ∑𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔
𝑖𝑖=1 ∑𝑁𝑁𝐸𝐸𝐸𝐸

𝑗𝑗=1 ∑𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘=1 ∑𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑙𝑙=1 (𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔
𝑖𝑖 (𝑡𝑡) +

𝐶𝐶𝐸𝐸𝐸𝐸
𝑗𝑗 (𝑡𝑡) + 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘 (𝑡𝑡) + 𝐶𝐶𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑙𝑙 (𝑡𝑡))                     (17) 

 

UP in equation (12) is used to show total power utilization. 
Up is a measure of how effectively the VPP is able to 
generate and distribute power to meet demand. Equation 
(18) for Up in a VPP considers the total power generated 
Pgen(t), stored PES(t), distribute Pdist(t), and potentially lost 
due to inefficiencies Ploss(t). 
 

𝑈𝑈𝑝𝑝(𝑡𝑡) = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡)+𝑃𝑃𝐸𝐸𝐸𝐸(𝑡𝑡)+𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)+𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)                      (18) 

 
Dmax is used to show maximum demand of electrical grid 
system and can be given by equation (19) while Dmax,VPP is 
used to show maximum demand after incorporating VPP 
as given by equation (20). Where Pload(t) is the power of 
load connected to electrical grid system. 
 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)                                  (19) 
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚,𝑉𝑉𝑉𝑉𝑉𝑉 = (𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) − ( 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) + 𝑃𝑃𝐸𝐸𝐸𝐸(𝑡𝑡) + 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) +

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡))                         (20) 
 

Sgrid is the stability of electrical grid system  is dependent 
upon power balance Pbalance(t) as given by equation (21), 
frequency deviation Δf(t) as given by equation (22) and  
voltage stability  which is influenced by reactive power 
balance Qbalance(t) as shown by equation (23), whereas, the 
stability of grid system is given by equation (24).Where, 
H is the inertia constant of grid system. 
 

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) = 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) + 𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡) − (𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) +
𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡))                      (21) 

           ∆𝑓𝑓(𝑡𝑡) = 1
2𝐻𝐻 ∫𝑡𝑡

0 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)𝑑𝑑𝑑𝑑                             
(22) 
𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) = 𝑄𝑄𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (𝑡𝑡) + 𝑄𝑄𝑉𝑉𝑉𝑉𝑉𝑉(𝑡𝑡) − (𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡))       (23) 

𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = {𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) ≈
0 ;              𝑓𝑓𝑓𝑓𝑓𝑓 100% 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∆𝑓𝑓(𝑡𝑡) ≈

0;    𝑓𝑓𝑓𝑓𝑓𝑓 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) ≅
0;        𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                           (24) 

 
Rgrid is the reliability of electrical grid system as indicated 
by equation (25). 
 

𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = ∫ (𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡)+𝑃𝑃𝐸𝐸𝐸𝐸(𝑡𝑡)+𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)+𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡))𝑇𝑇
𝑜𝑜 𝑑𝑑𝑑𝑑 

∫ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)𝑇𝑇
0 𝑑𝑑𝑑𝑑 

                (25) 

 
In multi-objectives function, J2 is given by equation (26). 
Where Pbus is the power of bus to which aggregator is 
connected and X is the load connected to bus.  
 

𝐽𝐽2 = −|𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 − (4 × 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 + ∑ 𝑋𝑋)|                    (26)  
 

J3 is given by equation (27), which is based on maximum 
energy trading position.   
 

𝐽𝐽3 = −𝑚𝑚𝑚𝑚𝑚𝑚 (𝑋𝑋𝑖𝑖)                                     (27) 
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J4 is another objective of multi-objectives function which 
shows the function controlling the grid stability and grid 
reliability and it can be given by equation (28). 
 

𝐽𝐽4 = −(𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)                                  (28) 

B. Different constraints used by VPP 

Different constraints used in evaluation of virtual power 
plant integrating into electrical grid system for optimal 
scheduling and bidding strategies are given below.  

 
1) Total power generation constraint 

The total power generation constraint of VPP integrating 
into electrical grid system can be illustrated with help of 
equation (29). Where, P(t) is the power generated by ith 
VPP at time t, and Pmax is the maximum possible generated 
power. 
 

∑ 𝑃𝑃(𝑡𝑡)𝑖𝑖 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁
𝑖𝑖=1    ∀𝑡𝑡                                         (29) 

 
2) Individual component constraints 

The individual component constraints are charging and 
discharging constraint of energy storage system as shown 
by equation (30) and (31), charging and discharging 
constraints of electrical vehicles as illustrated by equation 
(32) and (33) and the constraint of power utilization of 
HVAC is given by equation (34).  

 
𝐸𝐸𝐸𝐸𝐸𝐸 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∶    𝑃𝑃(𝑡𝑡)𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤
                                               𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 (𝐸𝐸𝐸𝐸𝐸𝐸)𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎                  (30)  
𝐸𝐸𝐸𝐸𝐸𝐸 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: 𝑃𝑃(𝑡𝑡)𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤
                                               𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 (𝐸𝐸𝐸𝐸𝐸𝐸)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎            (31) 
𝐸𝐸𝐸𝐸 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∶  𝑃𝑃(𝑡𝑡)𝐸𝐸𝐸𝐸𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤
                                              𝑃𝑃𝑚𝑚𝑚𝑚𝑥𝑥 (𝐸𝐸𝐸𝐸)𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎                   (32) 
𝐸𝐸𝐸𝐸 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: 𝑃𝑃(𝑡𝑡)𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤
                                              𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 (𝐸𝐸𝐸𝐸)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎             (33) 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻:    𝑃𝑃(𝑡𝑡)𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ≤ 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑚𝑚𝑚𝑚𝑚𝑚      (34) 
 

3) Optimal scheduling strategy 
In optimal scheduling strategies parameters, S(t) is used 

to show the optimal scheduling parameters for each 
particle at iteration time t and s1

(t) is the parameter for 
charging rate of ESS, s2

(t) is the parameter for discharging 
rate of ESS, s3

(t) is the parameter for storage level of ESS, 
s4

(t) is the parameter for demand level of EVs, s5
(t) is the 

parameter for demand level of HVAC and s6
(t) is the 

amount of surplus power if available. Equation (35) is 
used to show the optimal scheduling strategy of VPP in 
the framework of the solution bi-level stochastic 
optimization problem using adaptive control strategy. 
 

𝑆𝑆(𝑡𝑡) = {𝑠𝑠1
𝑡𝑡, 𝑠𝑠2

𝑡𝑡, 𝑠𝑠3
𝑡𝑡, 𝑠𝑠4

𝑡𝑡, 𝑠𝑠5
𝑡𝑡, 𝑠𝑠6

𝑡𝑡}                    (35) 
 

4) Bidding strategy 
In optimal scheduling strategies parameters, B(t) is used 

to show the bidding strategy parameters for each particle 
at iteration time t and b1

(t) is the parameter for bid prices, 
b2

(t) is the parameter for quantities of bid strategies, and 
b3

(t) is the parameter for bid threshold. Equation (36) is 
used to show the bidding strategy of VPP in the framework 
of the solution bi-level stochastic optimization problem 
using adaptive control strategy. 
 

𝐵𝐵(𝑡𝑡) = {𝑏𝑏1
𝑡𝑡, 𝑏𝑏2

𝑡𝑡 , 𝑏𝑏3
𝑡𝑡 }                            (36)  

  
5) Energy trading position  

Energy trading position is basically the position of the 
particle of adaptive control strategy, which represent the 
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different scenarios i=1,2,3,…..N. Equation (37) is used to 
show position of particle xi

(t) the energy trading position 
for different scenarios of bidding. Where, xN

t is the energy 
trading position of a particle at N number of scenario. 

 
𝑋𝑋𝑖𝑖

(𝑡𝑡) = {𝑥𝑥1
𝑡𝑡, 𝑥𝑥2

𝑡𝑡 , 𝑥𝑥3
𝑡𝑡 , … . . , 𝑥𝑥𝑁𝑁

𝑡𝑡 }                        (37) 

C. Structure algorithm of Multi-objectives function 
optimization 

Structured algorithms offer a methodical way to address 
intricate problems with multi-objective functions by 
dividing tasks into distinct, step-by-step processes. They 
improve the clarity, effectiveness, and manageability of 
code, assisting in comprehending and applying different 
adaptive techniques. Through arranging the flow of logic 
and data, structured algorithms support the adaptive 
procedure, allowing for the simultaneous reduction or 
increase of various goals in a harmonized approach. Table 
I shows structure algorithm of multi-objective function of 
VPP. 

 
TABLE I 

STRUCTURE ALGORITHM OF MULTI-OBJECTIVE FUNCTION OF VPP 
Structure algorithm of multi-objective function of VPP 

Start: 
1. Initialization of input parameters: NParticle, Niteration, Nvariable, 

Cpanel_per_watt, Wpanel, Cess_per_Wh, CEV_per_Wh 
2. Define multi-objective function: 

J1=w1 x C+w2 x Up –w3 x Dmax – w4 x Sgrid – w5 xRgrid 

J2= - |Pbus – (4 x Pagg + Σx)| 
J3= - max (x1) 

        J4= - (Sgrid, Rgrid) 
3. Define constraints function: fconstraints(x)=Σx -Pbus 
4.  initialization: Pposition=Rand(Nparticles, Nvariables);  

Pvelocity=zeros(Nparticles, Nvariables); 
5.  main loop: 

For iter=1:Niteration 
       Evaluate Ji for each particles 
       Update particle velocity and position 
       Clamps positions within the bounds 
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IV. Results and Discussions 
This section deals with the analysis of a VPP involves a 

detailed examination of various components such as PV 
systems, ESS systems, EVs, and HVACs, focusing on 
their unique characteristics and functions within the VPP 
framework for efficient grid operation. In Fig. 1, a line 
graph shows the solar plant's power output in winter under 
various shading and weather uncertainty scenarios. Blue 
represents 10% shading with 0% uncertainty, red shows 
10% shading with 10% uncertainty, black represents 50% 
shading with 10% uncertainty, green shows 50% shading 
with 50% uncertainty, yellow represents 80% shading 
with 50% uncertainty, and cyan illustrates 80% shading 
with 80% uncertainty. The graph demonstrates that as 
shading and uncertainty increase, maximum output power 
decreases, highlighting the significant impact of these 
factors on solar power generation. 
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Fig. 2 shows how a solar plant's output power during 
summer is affected by shading and weather uncertainty. 
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and uncertainty increase, output power drops 
significantly, with 80% shading and 80% uncertainty 
reducing it to 0.1 MW (cyan line). This highlights the 
strong influence of these factors on summer solar 
performance. Despite abundant sunlight, shading and 
weather variability still affect efficiency, underscoring the 
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around 1MW during peak solar irradiance, while the blue 
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input caused by uncertainties like grid connections and 
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showcasing the strategy's effectiveness in optimizing 
energy use and ensuring reliable ESS performance under 
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Fig. 4: Charging power of ESS with and without uncertainty during 

winter 

 
Fig. 5: Charging power of ESS with adaptive control strategy during 

summer and winter 
Fig. 6, 7, and 8 compare the impact of stochastic 
uncertainty and adaptive control strategies on the dynamic 
State of Charge (SOC) of the Energy Storage System 
(ESS) under summer conditions. In Fig. 6, the red line 
shows a predictable SOC, charging to 95% during peak 
solar hours and discharging to 38% by the 24th hour, while 
the blue line shows fluctuations from 2% to 16% due to 
uncertainties like grid variability. Fig. 7 follows a similar 
trend, reaching 65%, while Fig. 8, with adaptive control, 
stabilizes SOC, peaking at 92%. Adaptive control 
minimizes uncertainties, improving SOC management 
and system efficiency. 

 
Fig. 6: Dynamic state of charge of ESS with and without stochastic 

uncertainty during summer 

 
Fig. 7: Dynamic state of charge of ESS with and without stochastic 

uncertainty during winter 

 
Fig. 8: Dynamic state of charge of ESS with application of adaptive 

control strategy during summer and winter 
Fig. 9 illustrates the charging demand of EVs under 
stochastic influences like battery degradation and energy 
market prices during summer and winter. Initially, the 
demand is low at 0.1MW but rises to 0.9MW–1MW 
between hours 13 and 17, likely due to peak EV usage or 
energy price fluctuations. Fig. 10 shows the effect of 
applying an adaptive control strategy (PID) in both 
seasons. Charging power peaks between hours 11 and 14 
in winter and 13 and 17 in summer, maintaining levels 
around 0.6MW–0.7MW, demonstrating the strategy's 
effectiveness in optimizing energy use and managing 
dynamic demand. 
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Fig. 9 illustrates the charging demand of EVs under 
stochastic influences like battery degradation and energy 
market prices during summer and winter. Initially, the 
demand is low at 0.1MW but rises to 0.9MW–1MW 
between hours 13 and 17, likely due to peak EV usage or 
energy price fluctuations. Fig. 10 shows the effect of 
applying an adaptive control strategy (PID) in both 
seasons. Charging power peaks between hours 11 and 14 
in winter and 13 and 17 in summer, maintaining levels 
around 0.6MW–0.7MW, demonstrating the strategy's 
effectiveness in optimizing energy use and managing 
dynamic demand. 
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Fig. 10: Charging demand of EVs with adaptive control strategy during 

summer and winter 
Fig. 11 highlight the dynamic SOC in EV batteries 
influenced by stochastic uncertainty. In winter, SOC 
stabilizes at around 10% before discharging, while in 
summer, it peaks at a slightly higher level. Fig. 12 
demonstrate the effectiveness of adaptive control, 
particularly the PID controller, in maintaining consistent 
SOC levels. By dynamically adjusting charging rates, the 
adaptive strategy optimizes SOC, enhancing battery 
efficiency and lifespan. In both seasons, SOC approaches 
100% during charging and transitions smoothly to 
discharging, showcasing the reliability of adaptive control 
in managing EV battery performance under varying 
conditions. 

 
Fig. 11: Dynamic state of charge of the batteries of EVs with 

consideration of Stochastic uncertainty during summer and winter 

 
Fig. 12: Dynamic state of charge of Batteries of EVs with application of 

adaptive control strategy during summer and winter 
Fig. 13 illustrates the indoor temperature fluctuations over 
a 24-hour period, starting at 46°C and stabilizing at 32°C. 
The most notable change occurs between the tenth and 
fifteenth hour, where the temperature drops rapidly by 
10°C. This decrease likely result from the activation of 
cooling systems demonstrating the effectiveness of 
temperature regulation in enhancing indoor comfort. The 
rapid cooling phase highlights the importance of efficient 
cooling strategies to maintain a comfortable living 
environment. 

 
Fig. 13: Dynamic nature of indoor temperature with passage of time 

A. Case Analyses 

In this case study, we use adaptive control strategy to 
optimize a VPP integration into the grid, aiming to reduce 
operational costs and improve power utilization. By 
lowering peak demand, we enhance overall efficiency, 
stability, and reliability, advancing a robust energy 
infrastructure to meet modern demands. 
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Case 1: Cost minimization of the operation of VPP 

A thorough method was used to optimize cost 
operations of a VPP within the electrical grid system, 
which involved employing advanced analytics, VPP to 
efficiently manage resources and reduce operational costs. 
The comparison of actual and optimized VPP costs using 
adaptive algorithm over 20 iterations reveals that the 
optimized cost initially exceeds the actual cost, 
showcasing VPPs efficiency. Between iterations 2 and 4, 
the costs converge, indicating a potential plateau. At 
iteration 4, both costs reach zero, reflecting an effective 
setup. Later, negative costs may arise from penalties or 
numerical precision issues. The optimized cost’s drop to -
1 x 107 PKR by iteration 15, matched by the actual cost at 
iteration 16, suggests algorithmic tendencies or local 
minimum convergence, as shown in Fig. 14. This analysis 
highlights VPP’s impact on cost efficiency and the 
importance of monitoring cost patterns for improving VPP 
operations. 

  
Fig. 14: operation cost minimization of electrical grid system 

incorporating VPP 
 

Case 2: maximizing power utilization of VPP 

Enhancing a cutting-edge VPP involves optimizing 
stored, utilized, and distributed power by integrating 
sustainable energy sources. Fig. 15 illustrates VPP's 
impact on the electrical grid system, highlighting a 
significant decrease in stored power from 37MW to 5MW, 
indicating better energy utilization. While consumed 
power rises slightly to 10MW, total delivered power 
surges to 74MW, demonstrating VPP's effectiveness in 
resource allocation and power delivery. This increase 
underscores VPP's transformative role in improving the 
efficiency and sustainability of the electrical grid system. 

 
Fig. 15: Maximization of the utilization of power using VPP 

 
Case 3: Grid stability and reliability 

Fig. 16 compares grid stability and reliability under two 
scenarios: "Grid stability simple" and "Grid stability 
Vpp." The x-axis represents the scenarios, while the y-axis 
shows the percentage levels of grid stability and 
reliability. In the simple scenario, grid stability is 
relatively high at 80%, but in the Vpp scenario, it increases 
significantly to 95%, indicating a notable improvement. 
For grid reliability, the simple scenario stands at 20%, 
with a modest increase to 25% in the Vpp scenario. While 
the Vpp approach greatly enhances grid stability, its 
impact on reliability is less pronounced. This suggests that 
the Vpp method is particularly effective for boosting grid 
resilience and robustness, reducing blackouts, improving 
system efficiency, enhancing power quality, and making 
the grid more resilient to external disturbances like 
extreme weather and cyber-attacks. 
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Fig. 16: Grid stability and reliability integrating VPP 
 

Case 4: Optimal scheduling of VPP in electricity 
market 

The comparison of the upper and lower subplots in Fig. 
17 reveals insights into the impact of bi-level stochastic 
optimization on VPP scheduling within the electricity 
market. The upper subplot, representing scheduling 
without bi-level stochastic optimization, shows limited 
optimal behavior, indicating challenges in capturing 
uncertainties like demand fluctuations and price volatility. 
In contrast, the lower subplot, utilizing bi-level stochastic 
optimization, demonstrates improved scheduling 
effectiveness by addressing market uncertainties through 
probabilistic forecasting. 

 

Fig. 17: Optimal scheduling of VPP in electricity market with and 
without bi-level stochastic optimization 

Case 5: Bidding strategy of VPP in electricity market 

The comparison between the upper and lower subplots 
of Fig. 18 illustrates a clear disparity in the revenue results 
of the bidding strategy employed by the Virtual Power 
Plant in the electricity market, with and without the 
utilization of bi-level stochastic optimization. In the upper 
subplot, where bi-level stochastic optimization is not 
utilized, most scenarios generate revenue below 1 x 104 
USD. This suggests that the deterministic bidding strategy 
may face challenges in effectively adapting to and 
exploiting the dynamic market conditions and 
uncertainties, leading to suboptimal revenue generation. 
On the other hand, in the lower subplot, which 
incorporates bi-level stochastic optimization, the revenue 
outcomes for the majority of scenarios exceed 1 x 105 

USD. This notable enhancement highlights the 
transformative effect of bi-level stochastic optimization in 
improving the VPP's bidding strategy. Through the 
integration of probabilistic forecasting, risk management, 
and advanced optimization techniques, bi-level stochastic 
optimization empowers the VPP to dynamically adjust its 
bidding decisions in accordance with evolving market 
dynamics and uncertainties. This adaptive approach not 
only maximizes revenue potential but also reinforces the 
VPP's resilience and competitiveness within the electricity 
market landscape. 

 

Fig. 18: Bidding strategy of VPP in electricity market with and without 
bi-level stochastic optimization 

Bi-level stochastic optimization benefits from its ability 
to consider uncertainties in market parameters and system 
constraints, optimizing strategic decisions at the upper 
level and utilizing probabilistic forecasts at the lower 
level. The approach enables VPPs to balance risk and 
reward effectively, leading to adaptive scheduling 
solutions resilient to market uncertainties. Additionally, 
the bi-level stochastic optimization framework further 
enhances performance by efficiently exploring complex 
optimization problems, making it suitable for addressing 
the challenges faced by VPPs in the electricity market. 
Ultimately, the comparison highlights the crucial role of 
bi-level stochastic optimization in enhancing VPP 
scheduling performance by maximizing revenue, 
minimizing risk, and improving overall efficiency in 
dynamic market environments. 

The frequency distribution of power sold by the Virtual 
Power Plant to the electricity market, as shown in Fig. 18, 
provides important insights into the distribution patterns 
and market behavior of the VPP's power sales. The 
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distribution reveals various trends and anomalies in the 
frequency of power sales across different power output 
ranges. Initially, the distribution shows a fairly even 
pattern, with consistent frequencies of power sold between 
0 and 2.5 MW, indicating steady market demand within 
this range. However, changes in the distribution become 
apparent as the power output exceeds 2.5 MW. 
Specifically, there is an increase in the frequency of power 
sales between 2.5 and 3 MW, followed by a decrease 
between 3 and 4 MW, suggesting potential market 
dynamics or operational limitations affecting power sales 
in these ranges. Moreover, the irregular fluctuations in 
frequency between 4 and 10 MW suggest shifts in market 
demand or VPP operational strategies. For instance, the 
decrease in the frequency of power sales between 6 and 
7.5 MW, a sudden spike at 8 MW, and subsequent 
fluctuations may indicate market responses to pricing or 
supply dynamics, with the VPP adjusting its sales tactics 
accordingly. The peaks and valleys observed in the 
frequency distribution highlight the difficulties of 
optimizing power sales in response to evolving market 
conditions, varying demand, and operational factors. 
Ultimately, the frequency distribution provides valuable 
insights for enhancing the VPP's sales strategies, resource 
allocation, and market positioning to improve revenue 
generation and operational efficiency while effectively 
meeting market demand. 

 

Fig. 19: Frequency distribution of power sold by VPP 

V. Conclusion 
In conclusion, the detailed analysis highlights the 

pivotal role of VPPs in modernizing and enhancing grid 
operations by integrating renewable energy sources such 
as PV systems, along with ESS, EVs, and HVAC systems. 
The study underscores the significant impact of factors 
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demonstrating how VPPs can enhance grid stability, 
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17 reveals insights into the impact of bi-level stochastic 
optimization on VPP scheduling within the electricity 
market. The upper subplot, representing scheduling 
without bi-level stochastic optimization, shows limited 
optimal behavior, indicating challenges in capturing 
uncertainties like demand fluctuations and price volatility. 
In contrast, the lower subplot, utilizing bi-level stochastic 
optimization, demonstrates improved scheduling 
effectiveness by addressing market uncertainties through 
probabilistic forecasting. 
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Case 5: Bidding strategy of VPP in electricity market 

The comparison between the upper and lower subplots 
of Fig. 18 illustrates a clear disparity in the revenue results 
of the bidding strategy employed by the Virtual Power 
Plant in the electricity market, with and without the 
utilization of bi-level stochastic optimization. In the upper 
subplot, where bi-level stochastic optimization is not 
utilized, most scenarios generate revenue below 1 x 104 
USD. This suggests that the deterministic bidding strategy 
may face challenges in effectively adapting to and 
exploiting the dynamic market conditions and 
uncertainties, leading to suboptimal revenue generation. 
On the other hand, in the lower subplot, which 
incorporates bi-level stochastic optimization, the revenue 
outcomes for the majority of scenarios exceed 1 x 105 

USD. This notable enhancement highlights the 
transformative effect of bi-level stochastic optimization in 
improving the VPP's bidding strategy. Through the 
integration of probabilistic forecasting, risk management, 
and advanced optimization techniques, bi-level stochastic 
optimization empowers the VPP to dynamically adjust its 
bidding decisions in accordance with evolving market 
dynamics and uncertainties. This adaptive approach not 
only maximizes revenue potential but also reinforces the 
VPP's resilience and competitiveness within the electricity 
market landscape. 

 

Fig. 18: Bidding strategy of VPP in electricity market with and without 
bi-level stochastic optimization 

Bi-level stochastic optimization benefits from its ability 
to consider uncertainties in market parameters and system 
constraints, optimizing strategic decisions at the upper 
level and utilizing probabilistic forecasts at the lower 
level. The approach enables VPPs to balance risk and 
reward effectively, leading to adaptive scheduling 
solutions resilient to market uncertainties. Additionally, 
the bi-level stochastic optimization framework further 
enhances performance by efficiently exploring complex 
optimization problems, making it suitable for addressing 
the challenges faced by VPPs in the electricity market. 
Ultimately, the comparison highlights the crucial role of 
bi-level stochastic optimization in enhancing VPP 
scheduling performance by maximizing revenue, 
minimizing risk, and improving overall efficiency in 
dynamic market environments. 

The frequency distribution of power sold by the Virtual 
Power Plant to the electricity market, as shown in Fig. 18, 
provides important insights into the distribution patterns 
and market behavior of the VPP's power sales. The 
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distribution reveals various trends and anomalies in the 
frequency of power sales across different power output 
ranges. Initially, the distribution shows a fairly even 
pattern, with consistent frequencies of power sold between 
0 and 2.5 MW, indicating steady market demand within 
this range. However, changes in the distribution become 
apparent as the power output exceeds 2.5 MW. 
Specifically, there is an increase in the frequency of power 
sales between 2.5 and 3 MW, followed by a decrease 
between 3 and 4 MW, suggesting potential market 
dynamics or operational limitations affecting power sales 
in these ranges. Moreover, the irregular fluctuations in 
frequency between 4 and 10 MW suggest shifts in market 
demand or VPP operational strategies. For instance, the 
decrease in the frequency of power sales between 6 and 
7.5 MW, a sudden spike at 8 MW, and subsequent 
fluctuations may indicate market responses to pricing or 
supply dynamics, with the VPP adjusting its sales tactics 
accordingly. The peaks and valleys observed in the 
frequency distribution highlight the difficulties of 
optimizing power sales in response to evolving market 
conditions, varying demand, and operational factors. 
Ultimately, the frequency distribution provides valuable 
insights for enhancing the VPP's sales strategies, resource 
allocation, and market positioning to improve revenue 
generation and operational efficiency while effectively 
meeting market demand. 
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operations by integrating renewable energy sources such 
as PV systems, along with ESS, EVs, and HVAC systems. 
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like shading and weather uncertainties on solar power 
generation, emphasizing the need for advanced site 
selection, panel alignment, and forecasting methods to 
mitigate these effects. The analysis of ESS performance 
demonstrates that adaptive control strategies, particularly 

stochastic uncertainty management, are crucial for 
maintaining stable charging and SOC levels, improving 
both energy efficiency and system reliability. Similarly, 
EV charging demand responds dynamically to market 
influences and battery conditions, with adaptive control 
strategies further optimizing performance across different 
conditions. The case studies involving adaptive control 
strategy show the method's effectiveness in minimizing 
operational costs and maximizing power utilization, 
demonstrating how VPPs can enhance grid stability, 
reliability, and efficiency. Additionally, the application of 
bi-level stochastic optimization in VPP scheduling and 
bidding strategies proves to be a powerful approach, 
addressing uncertainties in the electricity market, 
improving decision-making processes, and maximizing 
revenue potential. By balancing risk and reward through 
probabilistic forecasting, this optimization framework 
enables VPPs to adapt to dynamic market conditions, 
enhancing both operational efficiency and economic 
resilience. Overall, this comprehensive analysis illustrates 
the transformative potential of VPPs in building a more 
sustainable, efficient, and reliable energy infrastructure 
capable of meeting the challenges of modern grid systems. 
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