Comparison of Q-learning and Sarsa Algorithm for Automated

Guided Vehicle Path Planning

J. O. Jeffrey Oon', S. N. L. K. Nor Azmi', N.I. Anwar Apandi'", N. Z. Abd Rahman?, N. A.

Muhammad?

Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal,

Melaka, Malaysia
%Faculty of Engineering & Technology, Multimedia University, 74540 Melaka, Malaysia

3Faculty of Electrical Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia

*Corresponding author’s email: ilyana@utem.edu.my

Abstract — An Automated Guided Vehicle (AGV) system is a type of material handling equipment
that navigates through a facility using a combination of sensors and computer control. However,
traditional path planning methods for AGVs often face challenges in determining efficient routes
while ensuring obstacle avoidance and minimizing computational overhead. These limitations
hinder the continuity and stabilization of production processes, particularly in complex and dynamic
environment. This work explores path planning for AGVs based on reinforcement learning,
specifically the Sarsa algorithm, where the AGV functions as an agent, influencing the continuity
and stabilization of the production process. The problem is framed as a Markov Decision Process
(MDP), allowing the AGV to model its environment and make sequential decisions to optimize its
path. As the agent undergoes training, the emphasis gradually shifts towards exploitation rather
than exploration. Problems involving obstacle avoidance strategies for static environments are also
addressed, considering various learning rates, discount factors, and steps. Simulation results
demonstrate that the AGV can avoid obstacles in a grid-mapped environment and reach its
destination. Therefore, the Sarsa algorithm converges faster and requires fewer steps compared to
Q-learning implementation.

Keywords: Automated Guided Vehicle (AGV), Discount Factor, Learning Rates, Markov Decision

Process (MDP), Q-Learning, Sarsa Algorithm.

Article History

Received 2 September 2024

Received in revised form 2 December 2024
Accepted 8 January 2025

1. Introduction

Automated Guided Vehicle (AGV) play an
important role in the industrial environment, especially
in intralogistics and material handling processes [1]. As
smart manufacturing environments become widespread,
the introduction of the Factory of the Future (FoF) system
employs the Internet of Things (IoT) and multi-access or
mobile edge computing systems to control and manage
AGYV fleets. In the past decades, there have been research
works on localization, scheduling, and path-planning
regarding AGV. Path planning refers to the ability of AGV
to search for the optimal path from the start point to the
target point with minimum time, in the meantime, AGV
considers the robotic constraints (obstacle avoidance) and
inter-robotic constraints (collision avoidance). Path
planning for the AGVs is one of the core challenges in the
field of autonomous manufacturing [2],[3] . For example,
the material handling process in the shop floor production
line is related to the continuity and stabilization of the

production process. Research directions have focused on
localization, scheduling, and path planning for AGVs [4],
while further exploring the optimization of AGV path
planning by considering robotic and inter-robotic
constraints such as obstacle avoidance and collision
avoidance [5]-[8],

Recently, reinforcement learning (RL) has served as a
solution to material handling challenges, particularly in
navigating obstacles and averting collisions to ensure
smooth distribution processes [9] - [12]. Machine learning
is a process where a device program increases its
performance by learning from experience. Machine
learning algorithms are divided into three categories
basically, which are supervised learning, unsupervised
learning and RL. Supervised learning refers to training a
device is trained using labeled data in the performance
classification or regression based on inductive inference.
Unsupervised learning trains a device using unlabeled data
by density estimation or clustering. RL trains a device by
agents and the interaction with the environment. Actions

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License, permitting copy
and redistribution of the material and adaptation for commercial and uncommercial use.

ISSN: 2600 - 7495

eISSN: 2600-9633

IJEEAS, Vol.8, No.1, April 2025 57

International Journal of Electrical Engineering and Applied Sciences

taken at every state affect the reward received, and the
successive state, and future rewards [13]. The
performance of AGVs can be evaluated based on factors
such as learning rate (a), discount factor (y), and steps
[14]. RL emerges as a powerful tool to empower AGVs to
make autonomous decisions based on their experiences
(2], [15]-[17].

By training AGVs through interaction with the
environment, RL enables actions to impact received
rewards and future states. Actions taken in one state lead
to transitions to the next state with associated
probabilities, and rewards guide subsequent actions [13].
Markov Decision Process (MDP) is a conventional
framework widely recognized for its efficiency in
decision-making problems based on RL. MDP is defined
by a set of <S§,A,T,R> which stands for “state”,
“action”, “transition” and, “reward” function, which
describe the function the agent’s interactions with the
environment. It allows the agent to evaluate different
actions in each state and determine an optimal policy to
maximize cumulative rewards over time. This structured
approach is particularly useful for AGV path planning,
where the goal is to find the best route while accounting
for obstacles and maximizing operational efficiency.
Understanding the relationships among these components
is crucial for informed decision-making. Update targets
are established based on received and expected future
rewards, employing a one-step look-ahead method by
achieving a balance of exploration and exploitation is
important for effective decision-making. Exploration
allows the agent to discover new states and rewards, while
exploitation is applying known information to maximize
immediate rewards. Striking this balance ensures that the
agent does not get stuck in suboptimal actions and
continuously improves its policy.

Q-learning is one of the remarkable classical RL
algorithms. Q-Learning was introduced by Watkins in the
year of 1989 [18]. Q-Learning is an off-policy algorithm,
which means target and behavior policies use different
policies. Target policy follows greedy policy in action
selection while behavior policy follows € -greedy policy
to select the actual action [19]. For instance, in aircraft
component assembly lines, where diverse AGV types
manage 13 stations, Q-Learning can aid in navigating
AGV states, including collisions, and facilitating conflict
resolution and task completion[14], [20]-[22].

However, Q-learning may face challenges in multi-
agent environments due to its large memory requirements,
leading to complex problems. State—Action—Reward—
State—Action, commonly referred to as Sarsa (L)
algorithm, represents an improved version of Q-Learning,
employing the same policy for both target and behavior
and utilizing an e-greedy strategy for action selection [18].
Moreover, research has shown that Q-Learning performs
sub-optimally compared to the Sarsa algorithm in solving
scheduling problems [20], [23]. The Sarsa algorithm

58 ISSN: 2600 - 7495 eISSN: 2600-9633

addresses mobile robot path planning, demonstrating
efficacy in resolving challenges such as obstacle
avoidance and path planning in complex environments
through two- and three-dimensional simulations [24].

The contributions of this paper are as follows. First, this
paper addresses the path planning challenges for AGVs in
the context of material handling in a shop floor area,
specifically in an indoor environment. Unlike [17], this
study includes investigating the path planning for AGV by
utilizing the RL and principles of the Sarsa algorithm. On
top of that, this study also presents a comprehensive
framework that utilizes MDP to model AGV path planning
task.

By implementing both Q-learning and the Sarsa
algorithm, the study demonstrates improved path planning
efficiency, reducing collision rates and optimizing routes
in real-time. The analysis of key performance metrics,
such as learning rate («), discount factor (y), and steps
provides valuable insights into the effectiveness of RL in
AGYV applications. Moreover, the research addresses the
computational challenges associated with RL, proposing
strategies to achieve faster learning speeds and shorter
convergence times, thereby making RL more practical for
industrial applications.

II. System Model

In this section, the system model for AGV path
planning using Q-learning is presented which defines the
framework within which the AGVs operate, outlining the
key model in RL-based decision-making, <S, A, T, R >.

In this model, each state and action pair correspond to
a Q-value, in which the sum of the existing Q-value is
updated with the new Q-value for the action for the current
state, S to determine the optimal action in the current state.
Q-learning continuously updates the Q-values for each
state until stabilized, meaning no further changes occur, or
until a predefined stopping criterion is met. For every
action taken by the agent, the Q-value is updated only
once. In environments with a large state-action space,
significant storage is required to accommodate the
extensive Q-table and its associated rewards.

Table I shows the table of Q-value, where the rows is
state, s and the columns represent action, a. Each state and
action pair corresponds to a Q-value. Action selection by
an agent is determined by Q-value, O (s, @), which is
updated as the sum of the received reward, 7, and expected
future value y max Q(s’,a’).

TABLEI
Q-VALUE TABLE
State Action a Ayl
s q(spay) q(sp.an)
S+l q(s pe1,a1) q(Sne1,@ni1)

The agent can move in four directions: north, south,
east, and west, which constitute action space. This

IJEEAS, Vol.8, No.1, April 2025

Comparison of Q-learning and Sarsa Algorithm for Automated Guided Vehicle Path Planning

movement corresponds to the ability of AGV to transition
between the adjacent cells. Fig. 1 illustrates the agent's in
circle indicates the detectable directions within the Grid
World environment.

North

West-—-O-—’East

South

Fig. 1. Detectable direction of the agent in Grid World Environment

The agent has four possible actions, and each
exploration updates the corresponding Q-value in the Q-
table. Given the state-action pair design, with two 4x4
states, thus, the total number of Q-values to be learned is
two 4x4x4. Therefore, there are 256 state-action pairs of
Q values to be learned. The obtained Q value matrix is
shown in (1).

— QsOaO
64x4 T

Q50a+1 (1)

Qs+1a0 Qs+1a+1

- { +10, if state = [4,4] o)

-1, otherwise

Every movement of the agent results in encountering
different states, the agent obtains the reward based on the
state. regardless of the action taken, according to prior
knowledge. The agent receives a reward, r =+10 when it
reach the terminal state and penalty r = —1 for every
other action, as shown in equation (2).

A. Policy

This section provides the highlights of the policy
employed in this study, focusing on implementing e-
greedy strategy. This strategy is a method used to balance
exploration and exploitation in RL. It ensures that the
agent explores the environment sufficiently while also
exploiting the knowledge it has gained to maximize
rewards.

Initially, when the agent has limited knowledge about
the problem environment, it tends to explore more.
However, as the agent undergoes training, the emphasis
gradually shifts towards exploitation rather than
exploration. Developing effective exploration strategies
for RL agents remains an active area of research.

To improve the decision-making process, the e-greedy
strategy is implemented as shown in equation (3), the
agent chooses an action randomly with a probability of
0 <e< 1, allowing for exploration of new actions.

{argmaxaQ(s’,a), 1—¢ 3)

Uniform, ¢

ISSN: 2600 - 7495

Conversely, with a probability of 1- €, the agent selects
the action with the highest Q-value for the current state,
thereby exploiting its existing knowledge to achieve the
best possible outcome. The rules used by the e-greedy
policy ensure that the action with the maximum Q-value
in a specific state is selected with a probability of 1- e,
while one of all possible actions in the state is chosen
randomly with a probability of e.

A stochastic policy, m is a mapping from states to
probabilities, where m(a|s) represents the probability of
acting a in state s. This means that for any given state, the
policy provides a probability distribution over possible
action. The aim of RL is to find the optimal policy, 7 *,
which maximizes the expected sum of discounted rewards
over time. The optimal policy is determined by evaluating
different policies and selecting the one that yields the
highest cumulative reward. The equation for the optimal
policy is given by (4).

= {argm‘;xaQ(S @]EH{EII;I;(} Y71 IS0 =53 (4)

For states in the set S, where s € S, vk = R(sk, ak)
represents the reward at time k. The value function V7(s)
at state s, following policy 7, denotes the expected reward
when starting at state s and adhering to the policy
thereafter. Table II shows the key components of the
optimal policy equation in RL.

TABLE II
KEY COMPONENTS OF THE OPTIMAL POLICY EQUATION IN RL

Components Descriptions
aramax The operation of finding the policy
g ” that yields the highest expected value
The expected value under policy, ©
E, expe h
considering all possible outcomes
H-1
Kk _ The total of discounted rewards over a
YTirrlso=s time horizon, H
k=0
k Time step index, from 0 to H-1
k Discount factor raised to the power of
4 k
Ths1 The reward at time step k + 1
Expectation is taken over all
(50 =5) trajectories starting the initial state

Sg =S

eISSN: 2600-9633

B. Discount Factor

The discount factor y € [0,1] represents future reward
controlled by a learning agent, aiming to maximize
cumulative rewards over time since state and action in
classical RL are discrete data where the action-value
function is tabulated [18].

A low discount factor initiates myopic behavior,
emphasizing the maximization of short-term rewards that
must be achieved by the agents. Conversely, a high

IJEEAS, Vol.8, No.1, April 2025 59

International Journal of Electrical Engineering and Applied Sciences

discount factor initiates rewards maximization of longer
frame rewards, making agents become more forward
looking. Action value function (Q-function) is defined as
in equation (5).

H-1
Qn’(sl a) =]ET[<z ykrk+1 | So =S,00 = a) (5)
k=0

The Bellman optimality equation for the action-value
function is introduced in equation (6). The Bellman
equation provides a recursive decomposition of the value
function, which will illustrate better on how decision-
making improves over time.

0.(5,0) = E[Rpyy +7maxq.(Sas, @IS, = sldeeq] ()

In this study, the implementation of Bellman equation,
one can update the value of Q-values iteratively, ensuring
that the learning agent converges with the optimal policy
that maximizes the cumulative rewards.

I11.

This section demonstrates the design of the algorithms
used in this study for path planning of AGV using the RL
application. The objective of this study is to determine the
most efficient route for AGVs while avoiding obstacles
and optimizing their performance within a material
handling environment. To solve this, reinforcement
learning methods specifically Q-learning and Sarsa are
implemented and compared to evaluate their effectiveness
in AGV navigation performance.

Design the Algorithms

A. Problem Definition

The main problem addressed in this study is the
development of an intelligent path planning strategy for
AGVs operating in an indoor manufacturing environment.
The AGV must learn to navigate from a designated start
point to a target location while optimizing travel time and
avoiding collisions with obstacles.

As mentioned earlier, the RL framework is defined in
terms of its essential variables and parameters, which
serve as the foundation for the agent's learning process.
These include the environment state, possible actions,
learning rate, discount factor, exploration-exploitation
strategy, and reward function. The outputs of this learning
process are the Q-values for each state-action pair and the
optimal policy derived from them. Table III shows the
input and output variables used in the design and
implementation of the algorithms.

60 ISSN: 2600 - 7495 eISSN: 2600-9633

TABLE III
'VARIABLES AND PARAMETERS OF ALGORITHMS
Ja };Ii):b(l’:s System Parameters Notation

Input Environment State s
Input Action a
Input Learning Rate a
Input Discount Factor 14
Input Exploration-Exploitation Policy €
Input Reward Function

Output Q-Value

Output Optimal Policy

B. O-Learning Algorithm

The equation of Q-learning, as described in (7), is
applied to the Q-values in Table I. This table shows how
each state s and action a pair corresponds to a specific Q-
value (Q(s,a)). For instance, in state s;, the agent
evaluates the potential Q-values for actions a; and a;_4 to
determine the most favorable course of action. The update
process involves recalculating Q(s,a) wusing the
immediate reward (r) and the discounted maximum
expected future value y maxQ(s’,a’). Equation (7) is

a
used to update the Q-value in Table I through the learning
process, as the agent optimizes its decision-making policy
based on the cumulative reward received over time.

Q'(s,a) « Q(s,a) +a[r+y max Q(s'a’) = Q(s,a)] (7)

Algorithm 1 : Q-Learning Algorithm
Input:s,a,y,a
Initialize Q(s, a):
1
Vs, Va,(als) = w
repeat
Initialization state S
repeat
Using (3), select action a under state s;
Obtain reward r and the nest state s';
Using (7), update Q(s, a);
s s’
until s is terminated;
until Vs, Va, Q(als) optimize;
Output : policy (s) = 97 Q(s,a)

Initially, the rewards are present in the Q-table. An
agent chooses an action through a policy in the starting
state and moves to the next state. This process is repeated
until the overall Q-value converges to a specific value
where the Q-table is used to solve a given problem.

C. Sarsa Algorithm

Sarsa is also based on the Q-table. The difference
between Q-Learning and Sarsa is the value of the actual
future action a,,, used instead of the maximum future
value as shown in (7). At each step of each episode, the

IJEEAS, Vol.8, No.1, April 2025

Comparison of Q-learning and Sarsa Algorithm for Automated Guided Vehicle Path Planning

next action to take is determined rather than dynamically
determining the step at the beginning of the next step. The
target policy and behavior policy of SARSA follow e-
greedy policies which depend on Q-value. Sarsa
eventually converges on the near-optimal policy and the
actual optimal policy cannot be obtained. Sarsa algorithm
is as equation (8).

Q'(spyar) « Q(sg,a.) — Q(sy, ap)
+ a[Rep1 +¥Q(Ses1,Apsr)] ®)

Algorithm 2 : Sarsa Algorithm
Input : s,a,y,a
Initialize Q(s, a):
1
vs,Va,m(als) = w
repeat
Initialization state S
repeat
Using (3), select action a under state s;
Obtain reward r and the nest state s;
Using (8), update Q(s, a);
seshia<ad
until s is terminated;
until Vs, Va, Q(als) optimize;

Output : policy m(s) = 978 Q(s,a)

D. Implementation of the AGV Path Planning

In this study, the AGV utilizes Sarsa algorithm which
can dynamically interact with its external environment
exploring paths through trial and error, and selecting the
optimal route based on the accumulated learning
experiences and an action selection strategy. During the
process of continuous interaction with the environment,
the AGV calculates the state-action value function Q (s, a)
and stores it in the Q-table. As the AGV continues to
explore and learn, Q(s,a) gradually converges to stable
values. Once the Q-table converges, the AGV selects the
action with the highest Q-value at each state to determine
and execute the optimal path [17].

IV. Results and Discussion

The simulation has been conducted in MATLAB. The
outcomes are systematically tabulated and presented in
graphical form to illustrate the agent’s performance under
the designated value of parameters. This section discusses
the findings from the simulations, comparing the
performance of the Q-learning and Sarsa algorithm in
terms of learning rate and discount factor, denoted by o
and v, respectively, and step against episode.

A. Performance of learning rate (o)

In the analysis of a performance for both Q-learning and
Sarsa, the constant parameters are tabulated as in Table IV

ISSN: 2600 - 7495

eISSN: 2600-9633

with discount factor, y = 0.9. The value range of
0=[0.1,0.9] being analyzed were categorized into three
categories which are lower «=[0.1,0.9], and higher
a=[0.7,0.9]. Fig. 2 and Fig. 3 shows the performance of
average rewards with lower and higher o respectively.

TABLE IV
CONSTANT PARAMETERS TO ANALYSIS PERFORMANCE
Notation System Parameters Values
M Number of maximum states per 500
episode
N; Number of iterations 100
€ Epsilon 0.9

Fig. 2 shows the impact of different learning rates on
average rewards in two reinforcement learning (RL)
algorithms. For lower learning values, a=0.1, there are
significant changes in average reward, with early rewards
gradually increasing until reaching optimal levels.
Increasing o to 0.3 leads to higher average rewards for
both algorithms. Both algorithms at the lower learning
rates converge around the 40th episode and converge
faster compared to higher rates. Q-Learning shows smaller
deviations in average rewards than Sarsa, implying that Q-
Learning may offer more consistent and reliable
performance in achieving optimal rewards under the given
parameters. However, Sarsa consistently displayed
smaller reward deviations than Q-Learning, suggesting
Sarsa's potential for more stable performance across
various learning rates and its advantage in achieving
optimal rewards. Q-Learning displays a wider range of
average rewards and converges more slowly compared to
Sarsa, which typically exhibits a narrower range of
rewards and converges faster.

In Fig. 3, the values of a are set to be 0=[0.7,0.9] for
higher learning rates. When a=0.7, the rewards increase at
first and then decrease. Then, 0=0.8 decreases
inconsistently at first and then increases, and 0=0.9
gradually decreases and reaches the lower limit of the
average reward. Q-Learning with 0=0.7 converges at the
44th episode, while the other values of a continue to
fluctuate over the episodes without reaching a stable state.
In the case of Sarsa, performance with ¢=0.7 remains
considerably stable compared to the other two values of a.
The latter exhibited dramatic oscillations around the near-
optimal value without achieving a stable state. Based on
the observations of both algorithms, higher o leads to
instabilities and hinders convergence to an optimal policy.
Large learning rate values can result in erratic
performance, making it challenging to achieve stable and
reliable learning outcomes. Striking a balance between
exploration and exploitation is crucial to ensure
convergence and stability in RL algorithms.

IJEEAS, Vol.8, No.1, April 2025 61

International Journal of Electrical Engineering and Applied Sciences

Average Reward

20

Average Reward

-100 [

20 F°

-140

——0.1
02

0.3

-160

0

100

which was higher than Sarsa's 0.33 %. Although both
algorithms produced negative cumulative rewards in each
of the 100 episodes, Q-Learning performed better,
demonstrating a larger positive reward percentage and a
more focused distribution of rewards within a smaller
range.

50
Episode
(b)
Fig. 2. Performance of average reward with lower o for (a) Q-
Learning; (b) Sarsa

g &
== =0

é

§

Average Reward
o
Average Reward

8

§

8
2
2
8
8
s
8
8
8

Fig. 3. Performance of average reward with higher o for (a) Q-
Learning; (b) Sarsa

B. Performance of discount factor (y)

In the performance analysis of the discount factor of Q-
learning and Sarsa, constant parameters have been used
for both. The parameters include the number of maximum
states per episode, the number of episodes, € and o= [7,
19]. The parameter values are tabulated in Table IV with
0=0.7. The value range of y=[0.1,0.9] being analyzed was
categorized into three categories which are lower y
=[0.1,0.3] and higher y =[0.7,0.9].

Fig. 4 shows the cumulative reward for each episode
with various y. Based on the analysis of learning factor, a,
the best o value that produces the highest generation value
of average rewards for Q-Learning is 0.5 while that for
Sarsa is 0.6. For comparison purposes, 0.5 of a was taken
in the performance analysis of the discount factor. This
value is used for the performance analysis of y as the fixed
parameter setting.

The study assessed the influence of the discount factor, y
on the Q-Learning and Sarsa algorithms by analyzing its
performance in lower and higher ranges, based on the
results presented in Fig. 5. Within the range y = [0.1, 0.3],
Q-Learning achieved a cumulative reward of 3.33 %,

62 ISSN: 2600 - 7495 eISSN: 2600-9633

100 100
oo - ia 0 d
. b o8
o
-100 }© o -100
© d o b=l e
& 200, & 200
] E
s 5 5
2 -300 . g -300 © *
£ £
o o
-400 * -400
+ .
o
-500 -500
01 + 01
o 02 o 02
o 03 a 03
600 -600
0 25 75 100 100

0
Epir)sode

(a)

5 50 75
Episode
(b)

Fig. 4. Performance of discount factor with various 7y for (a) Q-
Learning; (b) Sarsa

Transitioning to y = [0.4, 0.6], Sarsa was the best with
a significantly larger positive cumulative reward than Q-
Learning. In this range, Sarsa outperformed Q-Learning
by exhibiting a more converging range of average
rewards. As y values increased to y = [0.7, 0.9], Q-
Learning maintained its dominance, reaching a solid
positive cumulative reward of 78% compared to Sarsa's
significantly larger positive cumulative reward over the
episodes. Both algorithms achieved their highest positive
cumulative rewards at y = 0.9, indicating a preference for
long-term benefits over immediate gains at higher y
values.

100 100
0 0f
] &
f
-100 . -100
B [. ®
s ’ <
3 ‘ 5
@ -200 -200
o °
2 2
s]
S S
£ -300 B £ -300
E E
S S
o o
-400 -400
500 pesema@ oo -500
x 07 0.7
0.8 08
o 09 0.9
-600 -600
0 25 50 75 100 0 50 75 100
Episode Episode
(a) (b)

Fig. 5. Performance of discount factor with higher y for (a) Q-Learning;
(b) Sarsa

Fig. 5 shows that Q-Learning outperformed Sarsa for

cumulative reward at discount factor levels y =[0.7,0.9].
Q-Learning received a positive cumulative reward of
78%, whereas Sarsa received an even higher positive

IJEEAS, Vol.8, No.1, April 2025

Comparison of Q-learning and Sarsa Algorithm for Automated Guided Vehicle Path Planning

cumulative reward of 82.66%. Notably, Q-Learning had a
higher percentage by 86% of cumulative rewards falling
between -20 and 100, compared to Sarsa's by 84% within
the broader range of -60 to 50.

This demonstrates ability Q-Learning's capacity to
accumulate rewards across several episodes,
outperforming Sarsa's performance. The higher
cumulative reward gained by Q-Learning demonstrates its
capacity to successfully learn and utilise rewards within
the limitations imposed. Q-Learning converged earlier
than Sarsa, around the, respectively, 6th and 9th episodes,
but had higher fluctuations. Thus, analysing discount
factor performance demonstrates its remarkable influence
on cumulative rewards and convergence speed in Q-
Learning and Sarsa algorithms, with consequences for
learning efficiency and reward outcomes.

C. Performance of episode steps

The performance analysis of Q-learning and Sarsa
algorithms, conducted under constant parameters
including y=0.9, selected based on the highest cumulative
rewards observed. Fig. 6.(a) shows the performance in
terms of episode steps, indicating notable differences in
their exploration and convergence behaviors Q-Learning
has a greater maximum route length of 337, indicating a
more extensive exploration process and possibly slower
convergence to optimum policy, whereas Sarsa has a
shorter maximum path length of 210, implying faster
convergence. Moreover, Q-Learning's longer total
execution time implies greater computational demands or
slower convergence relative to Sarsa. This could be
attributed to Q-Learning's broader exploration, resulting in
a more comprehensive search for optimal policy and
longer convergence time, while Sarsa's focused
exploration enables relatively quicker convergence.

Fig. 6.(b) shows the performance of total agent steps,
with Q-Learning demonstrating phased increases and
Sarsa displaying a more gradual rise with an early spike.
The higher overall steps required by Q-Learning indicate
its exploration of a larger action-state space or prolonged
convergence, highlighting the trade-off between
exploration and exploitation.

Q-Learning's phased increase suggests a balance
between intensive exploration and subsequent
exploitation, potentially leading to the discovery of
optimal policy, whereas Sarsa's more gradual exploration
may prioritize efficiency but risks missing optimal
solutions. Sarsa focuses on the agent's performance during
the learning process by considering the exploration-
exploitation trade-off and incorporating an epsilon-greedy
policy and it can learn to avoid dangerous actions more
quickly than Q-learning. It updates its Q-values based on
the current state-action pair and the immediate reward,
considering the next action chosen according to the policy
being followed.

ISSN: 2600 - 7495

eISSN: 2600-9633

300 I

250 I

” I
I a I
0)
200 1 & I
a it = I
2 1 g |
12} L B} 1
150 I T ps)
10 2 ‘/
\
W l i
\ 7~
1001/ 1\ 1 i ,
R !
[
o]
sof | 1] 102
| |
; \‘ — 4 —Q-Learning
o h o) Sarsa
10° 10’ 102 10° 10’ 102
Episode Episode
(b) (a)

Fig. 6. Performance of (a) episode steps (b) total agent steps.

Sarsa is recommended for situations where the agent's
performance during the learning process matters, and the
agent's actions can directly impact the learning process
itself, where the agent prefers a safer path and minimizes
the risks during the learning phase.

V. Conclusion

In this paper, the AGV path planning was addressed
utilizing the RL, Q-learning and Sarsa. AGV performance
was analyzed by comparison between Q-learning and
Sarsa is analyzed based on learning rate (o), discount
factor (y), and step against episode. The results
demonstrated that the optimal rate («) for Q-Learning and
Sarsa is 0.5 and 0.6 respectively, while both algorithms
perform better high discount factors (y close to 1). The
convergence time of Sarsa was greater than that of Q-
learning, indicating that Q-learning fewer steps to
stabilize.

The dissimilar update rules of Q-learning and Sarsa
render them suitable for different scenarios. Q-learning
focuses on identifying the optimal policy by updating Q-
values based on the maximum expected future reward,
making it suitable for environments where exploration is
important. It can be effectively used in a practice phase
where the agent explores using an epsilon-greedy policy
(¢), followed by an optimal greedy policy during an
important deployment. On the other hand, Sarsa’s on
policy approach makes it beneficial in scenarios requiring
more stable learning during the training phase. For future
work, visualization of AGV performance can be further
developed to apply in AGV system for solving material
handling problem, contributing to the future of Industry
4.0 in the Asian region.

IJEEAS, Vol.8, No.1, April 2025 63

International Journal of Electrical Engineering and Applied Sciences

Acknowledgements

The authors wish to acknowledge the Ministry of
Higher Education (MOHE) of Malaysia and Universiti
Teknikal Malaysia Melaka (UTeM), for supporting this
research financially through the Fundamental Research
Grant Scheme, No.: FRGS/1/2022/TK07/UTEM/02/33.

Conflict of Interest

The authors declare no conflict of interest in the
publication process of the research article.

Author Contributions

Author 1: Data collection, analysis, writing — original draft
preparation; Author 2: Draft review and editing; Author 3:

Conceptualization,

review system model; Funding

acquisition; Author 4: project administration; Author 5:
review analysis.

[2]

[4]

[3]

[6]

[8]

[9]

[10]

64

References

E. A. Oyekanlu et al., “A review of recent advances in
automated guided vehicle technologies: Integration challenges
and research areas for 5G-based smart manufacturing
applications,” 2020, Institute of Electrical and Electronics
Engineers Inc. doi: 10.1109/ACCESS.2020.3035729.

E. Turki and H. Al-Rawi, “Multi-Robot Path-Planning
Problem for a Heavy Traffic Control Application: A Survey,”
International Journal of Advanced Computer Science and
Applications, vol. 7, no. 6, 2016, doi:
10.14569/ijacsa.2016.070623.

“TV2 Galeri Mandarin - DF Automation & Robotics Sdn Bhd
- YouTube.” Accessed: Jan. 26, 2024. [Online Video].
Auvailable: https://www.youtube.com/watch?v=NrUliUkX

R. H. Mohammed, M. E. Aboelmorsy, and B. E. Elnaghi, “Path
tracking control of differential drive mobile robot based on
chaotic-billiards optimization algorithm,” Int. J. Electr.
Comput. Eng, vol. 13, pp. 1449-1462, 2023.

E. T. S. Alotaibi and H. Al-Rawi, “A complete multi-robot
path-planning algorithm,” Auton Agent Multi Agent Syst, vol.
32, pp. 693-740, 2018.

M. Javaid, A. Haleem, S. Rab, R. P. Singh, R. Suman, and S.
Mohan, “Progressive schema of 5G for Industry 4.0: features,
enablers, and services,” Industrial Robot: the international

Journal of robotics research and application, vol. 49, no. 3, pp.

527-543, Jan. 2022, doi: 10.1108/IR-10-2021-0226.

W. S. WAN, N. I. A. Apandi, and N. A. Muhammad, “Task
Scheduling Based on Genetic Algorithm for Robotic System
in Manufacturing Industry,” International Journal of
Electrical Engineering and Applied Sciences (IJEEAS), vol. 5,
no. 1,2022.

Z.Maand D. Wang, “A CNN Based Q-learning Algorithm for
Path Planning of Automated Guided Vehicle,” in 2021 IEEE
International Conference on Electrical Engineering and
Mechatronics Technology (ICEEMT), 1EEE, Jul. 2021, pp.
704-708. doi: 10.1109/ICEEMT52412.2021.9601907.

J. Hua, L. Zeng, G. Li, and Z. Ju, “Learning for a robot: Deep
reinforcement learning, imitation learning, transfer learning,”
Sensors, vol. 21, no. 4, p. 1278, 2021.

N. P. Farazi, B. Zou, T. Ahamed, and L. Barua, “Deep
reinforcement learning in transportation research: A review,”
Transp Res Interdiscip Perspect, vol. 11, p. 100425, 2021.

ISSN: 2600 - 7495

eISSN: 2600-9633

(1]

[12]

[13]

[14]

[15]

[16]

[18]

[20]

[21]

[22]

[23]

[24]

B. Li and Y. Wu, “Path planning for UAV ground target
tracking via deep reinforcement learning,” IEEE access, vol.
8, pp. 29064-29074, 2020.

B. R. Kiran er al, “Deep reinforcement learning for
autonomous driving: A survey,” [EEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 6, pp. 4909—
4926, 2021.

B.R. Kiran ef al, “Deep Reinforcement Learning for
Autonomous Driving: A Survey,” [EEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 6, pp. 4909—
4926, Jun. 2022.

F. Martinez, H. Montiel, and L. Wanumen, “A deep
reinforcement learning strategy for autonomous robot
flocking,” International Journal of Electrical and Computer
Engineering (IJECE), vol. 13, no. 5, p. 5707, Oct. 2023, doi:
10.11591/ijece.v13i5.pp5707-5716.

G. Tang, C. Tang, C. Claramunt, X. Hu, and P. Zhou,
“Geometric A-Star Algorithm: AnImproved A-Star Algorithm
for AGV Path Planning in a Port Environment,” /EEE Access,
vol. 9, pp- 59196-59210, 2021, doi:
10.1109/ACCESS.2021.3070054.

Y. Yang, L. Juntao, and P. Lingling, “Multi-robot path
planning based on a deep reinforcement learning DQN
algorithm,” CAAI Trans Intell Technol, vol. 5, no. 3, pp. 177—
183, Sep. 2020, doi: 10.1049/trit.2020.0024.

X. Liao, Y. Wang, Y. Xuan, and D. Wu, “AGV Path Planning
Model based on Reinforcement Learning,” in 2020 Chinese
Automation Congress (CAC), 1EEE, Nov. 2020, pp. 6722—
6726. doi: 10.1109/CAC51589.2020.9326742.

M. Rothmann and M. Porrmann, “A Survey of Domain-
Specific Architectures for Reinforcement Learning,” /EEE
Access, vol. 10, pp. 13753-13767, Jan. 2022, doi:
10.1109/ACCESS.2022.3146518.

H. Jiang, R. Gui, Z. Chen, J. Dang, J. Zhou, and S. Member,
“AnImproved Sarsa(L) Reinforcement Learning Algorithm for
Wireless Communication Systems,” Special Section On
Artificial ~ Intelligence ~ For Physical-Layer — Wireless
Communications, vol. 7, pp. 115418-115427, Jun. 2019, doi:
10.1109/ACCESS.2019.2935255.

B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-Learning
Algorithms: A Comprehensive Classification and
Applications,” [EEE Access, vol. 7, pp. 133653-133667,2019,
doi: 10.1109/ACCESS.2019.2941229.

H. Hu, X. Jia, K. Liu, and B. Sun, “Self-adaptive traffic control
model with Behavior Trees and Reinforcement Learning for
AGV in Industry 4.0,” IEEE Trans Industr Inform, 2021, doi:
10.1109/T11.2021.3059676.

E. M. Raouhi, M. Lachgar, H. Hrimech, and A. Kartit,
“Optimizing olive disease classification through transfer
learning with unmanned aerial vehicle imagery,” International
Journal of Electrical and Computer Engineering (IJECE), vol.
14, no. 1, p. 891, Feb. 2024, doi: 10.11591/ijece.v14il.pp891-
903.

A. Momenikorbekandi and M. Abbod, “Intelligent Scheduling
Based on Reinforcement Learning Approaches: Applying
Advanced Q-Learning and State—Action—Reward—State—
Action Reinforcement Learning Models for the Optimisation
of Job Shop Scheduling Problems,” Electronics (Basel), vol.
12, no. 23, p. 4752, Nov. 2023, doi:
10.3390/electronics12234752.

D. Xu, Y. Fang, Z. Zhang, and Y. Meng, “Path Planning
Method Combining Depth Learning and Sarsa Algorithm,” in
2017 10th International Symposium on Computational
Intelligence and Design (ISCID), IEEE, Dec. 2017, pp. 77-82.
doi: 10.1109/ISCID.2017.145.

IJEEAS, Vol.8, No.1, April 2025

