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Abstract – In this paper, unbalanced three-phase fault in transmission lines is considered with 
respect to estimating the state of power system after a fault occurs at different buses. Faults such 
as a single-line-to-ground (SLG), line-to-line (LL) and double-line-to-ground (DLG) affect the 
bus system that is connected along with the transmission line. MATLAB software was employed 
in which unbalanced fault programs based on the Symmetrical Component method to determine 
the voltage magnitudes, line current magnitude, total fault current, real and reactive power at 
Phase A, Phase B and also on phase C for the different bus lines. The unbalanced fault programs 
are executed using a Newton Raphson based power flow program for the standard IEEE 14, 
IEEE 26 and IEEE 30 bus systems. The obtained results show that the single line to ground fault 
is the most severe kind for IEEE 14 bus system, while for IEEE 26 and IEEE 30 bus system, the 
most severe fault is line to line fault. This finding is crucial for evaluating the reliability and 
stability of power transmission lines. 
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I. Introduction 

The electric power generated in the power plant will 
be raised in terms of voltage level with the support of the 
transformer before the electricity is transmitted and 
distributed with large, interconnected power systems. 
Transmission lines are essential parts of modern power 
networks. They serve an important role in distributing 
electricity, and faults in these lines can cause substantial 
disruptions in power supply [1]. High voltage is 
delivered in the transmission line to minimize 
transmission losses and thus be able to ensure 
continuous power supply in power systems without 
problems [2]. Faults that can happen on any 
transmission line are known as balanced faults and 
unbalanced faults. Three-phase balanced faults and 
unbalanced faults are two types of power system faults. 
Unbalanced faults on electricity transmission lines can 
be classified into three types: single line-to-ground, line-
to-line, and double line-to-ground [3]. An unbalanced 
fault is known as the most common fault that happens in 
transmission lines [4]. Understanding how three-phase 
unbalance affects distribution equipment losses is 

essential for ensuring reliable and efficient operation of 
power distribution networks. Therefore, fault analysis is 
one of the proper ways to evaluate the fault currents and 
voltages in power systems. The fault analysis results are 
important for the power system design, the protection 
system setting, and power quality considerations [5]. 
Faults in transmission lines are caused by circuit failures 
that disrupt the regular flow of current. A short circuit or 
open circuit fault creates an undesired conducting route, 
preventing current flow [6]. Faults can cause major 
interruptions, thus rapid detection and classification is 
critical for effective management [7]. 

The symmetrical component method continues to be a 
crucial analytical tool for managing unbalanced faults in 
electrical power systems. Proper analyses of unbalanced 
three-phase fault systems need to be done to understand 
the power quality of the power system after the fault 
occurs.  

This study will analyze the performance in term of 
voltage magnitude and current magnitude in each phase 
under unbalanced fault condition. Other than that, it 
focuses on obtaining the total fault current; bus voltages 
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Abstract – An Automated Guided Vehicle (AGV) system is a type of material handling equipment 
that navigates through a facility using a combination of sensors and computer control. However, 
traditional path planning methods for AGVs often face challenges in determining efficient routes 
while ensuring obstacle avoidance and minimizing computational overhead. These limitations 
hinder the continuity and stabilization of production processes, particularly in complex and dynamic 
environment. This work explores path planning for AGVs based on reinforcement learning, 
specifically the Sarsa algorithm, where the AGV functions as an agent, influencing the continuity 
and stabilization of the production process. The problem is framed as a Markov Decision Process 
(MDP), allowing the AGV to model its environment and make sequential decisions to optimize its 
path. As the agent undergoes training, the emphasis gradually shifts towards exploitation rather 
than exploration. Problems involving obstacle avoidance strategies for static environments are also 
addressed, considering various learning rates, discount factors, and steps. Simulation results 
demonstrate that the AGV can avoid obstacles in a grid-mapped environment and reach its 
destination. Therefore, the Sarsa algorithm converges faster and requires fewer steps compared to 
Q-learning implementation. 
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I. Introduction 

Automated Guided Vehicle (AGV) play an 
important role in the industrial environment, especially 
in intralogistics and material handling processes [1]. As 
smart manufacturing environments become widespread, 
the introduction of the Factory of the Future (FoF) system 
employs the Internet of Things (IoT) and multi-access or 
mobile edge computing systems to control and manage 
AGV fleets. In the past decades, there have been research 
works on localization, scheduling, and path-planning 
regarding AGV. Path planning refers to the ability of AGV 
to search for the optimal path from the start point to the 
target point with minimum time, in the meantime, AGV 
considers the robotic constraints (obstacle avoidance) and 
inter-robotic constraints (collision avoidance). Path 
planning for the AGVs is one of the core challenges in the 
field of autonomous manufacturing [2],[3] . For example, 
the material handling process in the shop floor production 
line is related to the continuity and stabilization of the 

production process. Research directions have focused on 
localization, scheduling, and path planning for AGVs [4], 
while further exploring the optimization of AGV path 
planning by considering robotic and inter-robotic 
constraints such as obstacle avoidance and collision 
avoidance [5]-[8], 

Recently, reinforcement learning (RL) has served as a 
solution to material handling challenges, particularly in 
navigating obstacles and averting collisions to ensure 
smooth distribution processes [9] - [12]. Machine learning 
is a process where a device program increases its 
performance by learning from experience. Machine 
learning algorithms are divided into three categories 
basically, which are supervised learning, unsupervised 
learning and RL. Supervised learning refers to training a 
device is trained using labeled data in the performance 
classification or regression based on inductive inference. 
Unsupervised learning trains a device using unlabeled data 
by density estimation or clustering. RL trains a device by 
agents and the interaction with the environment. Actions 
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taken at every state affect the reward received, and the 
successive state, and future rewards [13]. The 
performance of AGVs can be evaluated based on factors 
such as learning rate (α), discount factor (γ), and steps 
[14]. RL emerges as a powerful tool to empower AGVs to 
make autonomous decisions based on their experiences 
[2], [15]-[17]. 

 
By training AGVs through interaction with the 

environment, RL enables actions to impact received 
rewards and future states. Actions taken in one state lead 
to transitions to the next state with associated 
probabilities, and rewards guide subsequent actions [13]. 
Markov Decision Process (MDP) is a conventional 
framework widely recognized for its efficiency in 
decision-making problems based on RL. MDP is defined 
by a set of < 𝑆𝑆, 𝐴𝐴, 𝑇𝑇, 𝑅𝑅 > which stands for “state”, 
“action”, “transition” and, “reward” function, which 
describe the function the agent’s interactions with the 
environment. It allows the agent to evaluate different 
actions in each state and determine an optimal policy to 
maximize cumulative rewards over time. This structured 
approach is particularly useful for AGV path planning, 
where the goal is to find the best route while accounting 
for obstacles and maximizing operational efficiency. 
Understanding the relationships among these components 
is crucial for informed decision-making. Update targets 
are established based on received and expected future 
rewards, employing a one-step look-ahead method by 
achieving a balance of exploration and exploitation is 
important for effective decision-making. Exploration 
allows the agent to discover new states and rewards, while 
exploitation is applying known information to maximize 
immediate rewards. Striking this balance ensures that the 
agent does not get stuck in suboptimal actions and 
continuously improves its policy. 

Q-learning is one of the remarkable classical RL 
algorithms. Q-Learning was introduced by Watkins in the 
year of 1989 [18]. Q-Learning is an off-policy algorithm, 
which means target and behavior policies use different 
policies. Target policy follows greedy policy in action 
selection while behavior policy follows ε -greedy policy 
to select the actual action [19]. For instance, in aircraft 
component assembly lines, where diverse AGV types 
manage 13 stations, Q-Learning can aid in navigating 
AGV states, including collisions, and facilitating conflict 
resolution and task completion[14], [20]-[22]. 

However, Q-learning may face challenges in multi-
agent environments due to its large memory requirements, 
leading to complex problems. State–Action–Reward–
State–Action, commonly referred to as Sarsa (λ) 
algorithm, represents an improved version of Q-Learning, 
employing the same policy for both target and behavior 
and utilizing an ε-greedy strategy for action selection [18]. 
Moreover, research has shown that Q-Learning performs 
sub-optimally compared to the Sarsa algorithm in solving 
scheduling problems [20], [23]. The Sarsa algorithm 

addresses mobile robot path planning, demonstrating 
efficacy in resolving challenges such as obstacle 
avoidance and path planning in complex environments 
through two- and three-dimensional simulations [24]. 

The contributions of this paper are as follows. First, this 
paper addresses the path planning challenges for AGVs in 
the context of material handling in a shop floor area, 
specifically in an indoor environment. Unlike [17], this 
study includes investigating the path planning for AGV by 
utilizing the RL and principles of the Sarsa algorithm. On 
top of that, this study also presents a comprehensive 
framework that utilizes MDP to model AGV path planning 
task.  

By implementing both Q-learning and the Sarsa 
algorithm, the study demonstrates improved path planning 
efficiency, reducing collision rates and optimizing routes 
in real-time. The analysis of key performance metrics, 
such as learning rate (𝛼𝛼), discount factor (γ), and steps 
provides valuable insights into the effectiveness of RL in 
AGV applications. Moreover, the research addresses the 
computational challenges associated with RL, proposing 
strategies to achieve faster learning speeds and shorter 
convergence times, thereby making RL more practical for 
industrial applications. 

II. System Model 
In this section, the system model for AGV path 

planning using Q-learning is presented which defines the 
framework within which the AGVs operate, outlining the 
key model in RL-based decision-making, < 𝑆𝑆, 𝐴𝐴, 𝑇𝑇, 𝑅𝑅 >.  

In this model, each state and action pair correspond to 
a Q-value, in which the sum of the existing Q-value is 
updated with the new Q-value for the action for the current 
state, 𝑆𝑆 to determine the optimal action in the current state. 
Q-learning continuously updates the Q-values for each 
state until stabilized, meaning no further changes occur, or 
until a predefined stopping criterion is met. For every 
action taken by the agent, the Q-value is updated only 
once. In environments with a large state-action space, 
significant storage is required to accommodate the 
extensive Q-table and its associated rewards. 

Table I shows the table of Q-value, where the rows is 
state, 𝑠𝑠 and the columns represent action, 𝑎𝑎. Each state and 
action pair corresponds to a Q-value. Action selection by 
an agent is determined by Q-value, Q (s, a), which is 
updated as the sum of the received reward, r, and expected 
future value γ max Q(s’,a’). 
 

TABLE I 
Q-VALUE TABLE 

State Action a1 a n+1 

s1 q(s1,a1) q(s1,an+1) 

s n+1 q(s n+1,a1) q(sn+1,an+1) 

The agent can move in four directions: north, south, 
east, and west, which constitute action space. This 
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movement corresponds to the ability of AGV to transition 
between the adjacent cells. Fig. 1 illustrates the agent's in 
circle indicates the detectable directions within the Grid 
World environment.  

 
Fig. 1. Detectable direction of the agent in Grid World Environment 

 
The agent has four possible actions, and each 

exploration updates the corresponding Q-value in the Q-
table. Given the state-action pair design, with two 4×4 
states, thus, the total number of Q-values to be learned is 
two 4×4×4. Therefore, there are 256 state-action pairs of 
Q values to be learned. The obtained Q value matrix is 
shown in (1).  

𝑄𝑄64×4 = [ 𝑄𝑄𝑠𝑠0𝑎𝑎0 𝑄𝑄𝑠𝑠0𝑎𝑎+1
𝑄𝑄𝑠𝑠+1𝑎𝑎0 𝑄𝑄𝑠𝑠+1𝑎𝑎+1

]           (1) 
 
 

𝑟𝑟 = { +10, 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = [4,4]
−1,                  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒         (2) 

 
Every movement of the agent results in encountering 

different states, the agent obtains the reward based on the 
state. regardless of the action taken, according to prior 
knowledge. The agent receives a reward,  𝑟𝑟 =+10 when it 
reach the terminal state and penalty 𝑟𝑟 = −1 for every 
other action, as shown in equation (2). 

A. Policy 

This section provides the highlights of the policy 
employed in this study, focusing on implementing ɛ-
greedy strategy. This strategy is a method used to balance 
exploration and exploitation in RL. It ensures that the 
agent explores the environment sufficiently while also 
exploiting the knowledge it has gained to maximize 
rewards. 

Initially, when the agent has limited knowledge about 
the problem environment, it tends to explore more. 
However, as the agent undergoes training, the emphasis 
gradually shifts towards exploitation rather than 
exploration. Developing effective exploration strategies 
for RL agents remains an active area of research. 

To improve the decision-making process, the ɛ-greedy 
strategy is implemented as shown in equation (3), the 
agent chooses an action randomly with a probability of   
0 < ɛ < 1 , allowing for exploration of new actions.  

{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑄𝑄(𝑠𝑠′, 𝑎𝑎),   1 −  ɛ
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈,      ɛ               (3) 

 

Conversely, with a probability of 1- ɛ, the agent selects 
the action with the highest Q-value for the current state, 
thereby exploiting its existing knowledge to achieve the 
best possible outcome. The rules used by the 𝜀𝜀-greedy 
policy ensure that the action with the maximum Q-value 
in a specific state is selected with a probability of 1- ɛ, 
while one of all possible actions in the state is chosen 
randomly with a probability of ɛ. 

A stochastic policy, 𝜋𝜋 is a mapping from states to 
probabilities, where 𝜋𝜋(𝑎𝑎|𝑠𝑠) represents the probability of 
acting 𝑎𝑎 in state 𝑠𝑠. This means that for any given state, the 
policy provides a probability distribution over possible 
action. The aim of RL is to find the optimal policy, 𝜋𝜋 ∗, 
which maximizes the expected sum of discounted rewards 
over time. The optimal policy is determined by evaluating 
different policies and selecting the one that yields the 
highest cumulative reward. The equation for the optimal 
policy is given by (4). 

𝜋𝜋 = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑄𝑄(𝑠𝑠′, 𝑎𝑎),
𝜋𝜋,        𝔼𝔼𝜋𝜋{∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑘𝑘+1 | 𝑠𝑠0 = 𝑠𝑠𝐻𝐻−1

𝑘𝑘=0 }    (4) 
 

For states in the set 𝑆𝑆, where 𝑠𝑠 ∈ 𝑆𝑆, 𝑟𝑟𝑟𝑟 = 𝑅𝑅(𝑠𝑠𝑠𝑠, 𝑎𝑎𝑎𝑎) 
represents the reward at time 𝑘𝑘. The value function 𝑉𝑉𝑉𝑉(𝑠𝑠) 
at state 𝑠𝑠, following policy 𝜋𝜋, denotes the expected reward 
when starting at state 𝑠𝑠 and adhering to the policy 𝜋𝜋 
thereafter. Table II shows the key components of the 
optimal policy equation in RL. 

 
TABLE II 

KEY COMPONENTS OF THE OPTIMAL POLICY EQUATION IN RL 

Components Descriptions 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜋𝜋 The operation of finding the policy 
that yields the highest expected value 

𝔼𝔼𝜋𝜋 The expected value under policy, π 
considering all possible outcomes 

{∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑘𝑘+1 | 𝑠𝑠0 = 𝑠𝑠
𝐻𝐻−1

𝑘𝑘=0
} 

The total of discounted rewards over a 
time horizon, H 

𝑘𝑘 Time step index, from 0 to H-1 

𝛾𝛾𝑘𝑘 Discount factor raised to the power of 
𝑘𝑘  

𝑟𝑟𝑘𝑘+1 The reward at time step 𝑘𝑘 + 1 

(𝑠𝑠0 = 𝑠𝑠) 
Expectation is taken over all 
trajectories starting the initial state  
𝑠𝑠0 = 𝑠𝑠  

B. Discount Factor 

The discount factor 𝛾𝛾 ∈ [0,1] represents future reward 
controlled by a learning agent, aiming to maximize 
cumulative rewards over time since state and action in 
classical RL are discrete data where the action-value 
function is tabulated [18]. 

A low discount factor initiates myopic behavior, 
emphasizing the maximization of short-term rewards that 
must be achieved by the agents. Conversely, a high 
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discount factor initiates rewards maximization of longer 
frame rewards, making agents become more forward 
looking. Action value function (Q-function) is defined as 
in equation (5).  
 

𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼𝜋𝜋 (∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑘𝑘+1 | 𝑠𝑠0 = 𝑠𝑠
𝐻𝐻−1

𝑘𝑘=0
, 𝑎𝑎0 = 𝑎𝑎)             (5) 

 
The Bellman optimality equation for the action-value 

function is introduced in equation (6). The Bellman 
equation provides a recursive decomposition of the value 
function, which will illustrate better on how decision-
making improves over time.  
 
𝑞𝑞∗(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼 [𝑅𝑅𝑡𝑡+1 +𝛾𝛾max

𝑎𝑎′ 𝑞𝑞∗(𝑆𝑆𝑡𝑡+1, 𝑎𝑎′)|𝑆𝑆𝑡𝑡 = 𝑠𝑠|𝐴𝐴𝑡𝑡=𝑎𝑎]  (6) 
 

In this study, the implementation of Bellman equation, 
one can update the value of Q-values iteratively, ensuring 
that the learning agent converges with the optimal policy 
that maximizes the cumulative rewards.  

III. Design the Algorithms 
This section demonstrates the design of the algorithms 
used in this study for path planning of AGV using the RL 
application. The objective of this study is to determine the 
most efficient route for AGVs while avoiding obstacles 
and optimizing their performance within a material 
handling environment. To solve this, reinforcement 
learning methods specifically Q-learning and Sarsa are 
implemented and compared to evaluate their effectiveness 
in AGV navigation performance. 

A. Problem Definition 

The main problem addressed in this study is the 
development of an intelligent path planning strategy for 
AGVs operating in an indoor manufacturing environment. 
The AGV must learn to navigate from a designated start 
point to a target location while optimizing travel time and 
avoiding collisions with obstacles.  

As mentioned earlier, the RL framework is defined in 
terms of its essential variables and parameters, which 
serve as the foundation for the agent's learning process. 
These include the environment state, possible actions, 
learning rate, discount factor, exploration-exploitation 
strategy, and reward function. The outputs of this learning 
process are the Q-values for each state-action pair and the 
optimal policy derived from them. Table III shows the 
input and output variables used in the design and 
implementation of the algorithms.  

TABLE III 
VARIABLES AND PARAMETERS OF ALGORITHMS 

Type of 
Variables System Parameters Notation 

Input Environment State 𝑠𝑠 

Input Action 𝑎𝑎 

Input Learning Rate 𝛼𝛼 

Input Discount Factor 𝛾𝛾 

Input Exploration-Exploitation Policy  𝜖𝜖 

Input Reward Function 𝑟𝑟 

Output Q-Value  𝑄𝑄 

Output Optimal Policy 𝜋𝜋 

 

B. Q-Learning Algorithm 

The equation of Q-learning, as described in (7), is 
applied to the Q-values in Table I. This table shows how 
each state 𝑠𝑠 and action 𝑎𝑎 pair corresponds to a specific Q-
value (𝑄𝑄(𝑠𝑠, 𝑎𝑎)). For instance, in state 𝑠𝑠𝑗𝑗 , the agent 
evaluates the potential Q-values for actions 𝑎𝑎𝑖𝑖 and 𝑎𝑎𝑖𝑖−1 to 
determine the most favorable course of action. The update 
process involves recalculating 𝑄𝑄(𝑠𝑠, 𝑎𝑎) using the 
immediate reward (𝑟𝑟) and the discounted maximum 
expected future value 𝛾𝛾 max 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)

𝑎𝑎
. Equation (7) is 

used to update the Q-value in Table I through the learning 
process, as the agent optimizes its decision-making policy 
based on the cumulative reward received over time. 
 
𝑄𝑄′(𝑠𝑠, 𝑎𝑎) ← 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼[𝑟𝑟 + 𝛾𝛾 max

𝑎𝑎′∈𝐴𝐴
𝑄𝑄(𝑠𝑠′𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)]  (7)       

 

Algorithm 1 : Q-Learning Algorithm 
Input : 𝑠𝑠, 𝑎𝑎, 𝛾𝛾, 𝛼𝛼 
Initialize 𝑄𝑄(𝑠𝑠, 𝑎𝑎): 
∀𝑠𝑠, ∀𝑎𝑎, 𝜋𝜋(𝑎𝑎|𝑠𝑠) = 1

|𝐴𝐴|; 
repeat  

Initialization state 𝑆𝑆 
repeat 

Using (3), select action 𝑎𝑎 under state 𝑠𝑠; 
Obtain reward 𝑟𝑟 and the nest state 𝑠𝑠′; 
Using (7), update 𝑄𝑄(𝑠𝑠, 𝑎𝑎); 
𝑠𝑠 ← 𝑠𝑠′; 
until 𝑠𝑠 is terminated; 

until ∀𝑠𝑠, ∀𝑎𝑎, 𝑄𝑄(𝑎𝑎|𝑠𝑠) optimize; 
Output : policy 𝜋𝜋(𝑠𝑠) =   𝑄𝑄(𝑠𝑠, 𝑎𝑎)𝜋𝜋∈𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

 
Initially, the rewards are present in the Q-table. An 

agent chooses an action through a policy in the starting 
state and moves to the next state. This process is repeated 
until the overall Q-value converges to a specific value 
where the Q-table is used to solve a given problem. 

 
 

 

C. Sarsa Algorithm 

Sarsa is also based on the Q-table. The difference 
between Q-Learning and Sarsa is the value of the actual 
future action 𝑎𝑎𝑡𝑡+1 used instead of the maximum future 
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discount factor initiates rewards maximization of longer 
frame rewards, making agents become more forward 
looking. Action value function (Q-function) is defined as 
in equation (5).  
 

𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼𝜋𝜋 (∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑘𝑘+1 | 𝑠𝑠0 = 𝑠𝑠
𝐻𝐻−1

𝑘𝑘=0
, 𝑎𝑎0 = 𝑎𝑎)             (5) 

 
The Bellman optimality equation for the action-value 

function is introduced in equation (6). The Bellman 
equation provides a recursive decomposition of the value 
function, which will illustrate better on how decision-
making improves over time.  
 
𝑞𝑞∗(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼 [𝑅𝑅𝑡𝑡+1 +𝛾𝛾max

𝑎𝑎′ 𝑞𝑞∗(𝑆𝑆𝑡𝑡+1, 𝑎𝑎′)|𝑆𝑆𝑡𝑡 = 𝑠𝑠|𝐴𝐴𝑡𝑡=𝑎𝑎]  (6) 
 

In this study, the implementation of Bellman equation, 
one can update the value of Q-values iteratively, ensuring 
that the learning agent converges with the optimal policy 
that maximizes the cumulative rewards.  

III. Design the Algorithms 
This section demonstrates the design of the algorithms 
used in this study for path planning of AGV using the RL 
application. The objective of this study is to determine the 
most efficient route for AGVs while avoiding obstacles 
and optimizing their performance within a material 
handling environment. To solve this, reinforcement 
learning methods specifically Q-learning and Sarsa are 
implemented and compared to evaluate their effectiveness 
in AGV navigation performance. 

A. Problem Definition 

The main problem addressed in this study is the 
development of an intelligent path planning strategy for 
AGVs operating in an indoor manufacturing environment. 
The AGV must learn to navigate from a designated start 
point to a target location while optimizing travel time and 
avoiding collisions with obstacles.  

As mentioned earlier, the RL framework is defined in 
terms of its essential variables and parameters, which 
serve as the foundation for the agent's learning process. 
These include the environment state, possible actions, 
learning rate, discount factor, exploration-exploitation 
strategy, and reward function. The outputs of this learning 
process are the Q-values for each state-action pair and the 
optimal policy derived from them. Table III shows the 
input and output variables used in the design and 
implementation of the algorithms.  

TABLE III 
VARIABLES AND PARAMETERS OF ALGORITHMS 

Type of 
Variables System Parameters Notation 

Input Environment State 𝑠𝑠 

Input Action 𝑎𝑎 

Input Learning Rate 𝛼𝛼 

Input Discount Factor 𝛾𝛾 

Input Exploration-Exploitation Policy  𝜖𝜖 

Input Reward Function 𝑟𝑟 

Output Q-Value  𝑄𝑄 

Output Optimal Policy 𝜋𝜋 

 

B. Q-Learning Algorithm 

The equation of Q-learning, as described in (7), is 
applied to the Q-values in Table I. This table shows how 
each state 𝑠𝑠 and action 𝑎𝑎 pair corresponds to a specific Q-
value (𝑄𝑄(𝑠𝑠, 𝑎𝑎)). For instance, in state 𝑠𝑠𝑗𝑗 , the agent 
evaluates the potential Q-values for actions 𝑎𝑎𝑖𝑖 and 𝑎𝑎𝑖𝑖−1 to 
determine the most favorable course of action. The update 
process involves recalculating 𝑄𝑄(𝑠𝑠, 𝑎𝑎) using the 
immediate reward (𝑟𝑟) and the discounted maximum 
expected future value 𝛾𝛾 max 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)

𝑎𝑎
. Equation (7) is 

used to update the Q-value in Table I through the learning 
process, as the agent optimizes its decision-making policy 
based on the cumulative reward received over time. 
 
𝑄𝑄′(𝑠𝑠, 𝑎𝑎) ← 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼[𝑟𝑟 + 𝛾𝛾 max

𝑎𝑎′∈𝐴𝐴
𝑄𝑄(𝑠𝑠′𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)]  (7)       

 

Algorithm 1 : Q-Learning Algorithm 
Input : 𝑠𝑠, 𝑎𝑎, 𝛾𝛾, 𝛼𝛼 
Initialize 𝑄𝑄(𝑠𝑠, 𝑎𝑎): 
∀𝑠𝑠, ∀𝑎𝑎, 𝜋𝜋(𝑎𝑎|𝑠𝑠) = 1

|𝐴𝐴|; 
repeat  

Initialization state 𝑆𝑆 
repeat 

Using (3), select action 𝑎𝑎 under state 𝑠𝑠; 
Obtain reward 𝑟𝑟 and the nest state 𝑠𝑠′; 
Using (7), update 𝑄𝑄(𝑠𝑠, 𝑎𝑎); 
𝑠𝑠 ← 𝑠𝑠′; 
until 𝑠𝑠 is terminated; 

until ∀𝑠𝑠, ∀𝑎𝑎, 𝑄𝑄(𝑎𝑎|𝑠𝑠) optimize; 
Output : policy 𝜋𝜋(𝑠𝑠) =   𝑄𝑄(𝑠𝑠, 𝑎𝑎)𝜋𝜋∈𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

 
Initially, the rewards are present in the Q-table. An 

agent chooses an action through a policy in the starting 
state and moves to the next state. This process is repeated 
until the overall Q-value converges to a specific value 
where the Q-table is used to solve a given problem. 

 
 

 

C. Sarsa Algorithm 

Sarsa is also based on the Q-table. The difference 
between Q-Learning and Sarsa is the value of the actual 
future action 𝑎𝑎𝑡𝑡+1 used instead of the maximum future 
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discount factor initiates rewards maximization of longer 
frame rewards, making agents become more forward 
looking. Action value function (Q-function) is defined as 
in equation (5).  
 

𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼𝜋𝜋 (∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑘𝑘+1 | 𝑠𝑠0 = 𝑠𝑠
𝐻𝐻−1

𝑘𝑘=0
, 𝑎𝑎0 = 𝑎𝑎)             (5) 

 
The Bellman optimality equation for the action-value 

function is introduced in equation (6). The Bellman 
equation provides a recursive decomposition of the value 
function, which will illustrate better on how decision-
making improves over time.  
 
𝑞𝑞∗(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼 [𝑅𝑅𝑡𝑡+1 +𝛾𝛾max

𝑎𝑎′ 𝑞𝑞∗(𝑆𝑆𝑡𝑡+1, 𝑎𝑎′)|𝑆𝑆𝑡𝑡 = 𝑠𝑠|𝐴𝐴𝑡𝑡=𝑎𝑎]  (6) 
 

In this study, the implementation of Bellman equation, 
one can update the value of Q-values iteratively, ensuring 
that the learning agent converges with the optimal policy 
that maximizes the cumulative rewards.  

III. Design the Algorithms 
This section demonstrates the design of the algorithms 
used in this study for path planning of AGV using the RL 
application. The objective of this study is to determine the 
most efficient route for AGVs while avoiding obstacles 
and optimizing their performance within a material 
handling environment. To solve this, reinforcement 
learning methods specifically Q-learning and Sarsa are 
implemented and compared to evaluate their effectiveness 
in AGV navigation performance. 

A. Problem Definition 

The main problem addressed in this study is the 
development of an intelligent path planning strategy for 
AGVs operating in an indoor manufacturing environment. 
The AGV must learn to navigate from a designated start 
point to a target location while optimizing travel time and 
avoiding collisions with obstacles.  

As mentioned earlier, the RL framework is defined in 
terms of its essential variables and parameters, which 
serve as the foundation for the agent's learning process. 
These include the environment state, possible actions, 
learning rate, discount factor, exploration-exploitation 
strategy, and reward function. The outputs of this learning 
process are the Q-values for each state-action pair and the 
optimal policy derived from them. Table III shows the 
input and output variables used in the design and 
implementation of the algorithms.  

TABLE III 
VARIABLES AND PARAMETERS OF ALGORITHMS 

Type of 
Variables System Parameters Notation 

Input Environment State 𝑠𝑠 

Input Action 𝑎𝑎 

Input Learning Rate 𝛼𝛼 

Input Discount Factor 𝛾𝛾 

Input Exploration-Exploitation Policy  𝜖𝜖 

Input Reward Function 𝑟𝑟 

Output Q-Value  𝑄𝑄 

Output Optimal Policy 𝜋𝜋 

 

B. Q-Learning Algorithm 

The equation of Q-learning, as described in (7), is 
applied to the Q-values in Table I. This table shows how 
each state 𝑠𝑠 and action 𝑎𝑎 pair corresponds to a specific Q-
value (𝑄𝑄(𝑠𝑠, 𝑎𝑎)). For instance, in state 𝑠𝑠𝑗𝑗 , the agent 
evaluates the potential Q-values for actions 𝑎𝑎𝑖𝑖 and 𝑎𝑎𝑖𝑖−1 to 
determine the most favorable course of action. The update 
process involves recalculating 𝑄𝑄(𝑠𝑠, 𝑎𝑎) using the 
immediate reward (𝑟𝑟) and the discounted maximum 
expected future value 𝛾𝛾 max 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)

𝑎𝑎
. Equation (7) is 

used to update the Q-value in Table I through the learning 
process, as the agent optimizes its decision-making policy 
based on the cumulative reward received over time. 
 
𝑄𝑄′(𝑠𝑠, 𝑎𝑎) ← 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼[𝑟𝑟 + 𝛾𝛾 max

𝑎𝑎′∈𝐴𝐴
𝑄𝑄(𝑠𝑠′𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)]  (7)       

 

Algorithm 1 : Q-Learning Algorithm 
Input : 𝑠𝑠, 𝑎𝑎, 𝛾𝛾, 𝛼𝛼 
Initialize 𝑄𝑄(𝑠𝑠, 𝑎𝑎): 
∀𝑠𝑠, ∀𝑎𝑎, 𝜋𝜋(𝑎𝑎|𝑠𝑠) = 1

|𝐴𝐴|; 
repeat  

Initialization state 𝑆𝑆 
repeat 

Using (3), select action 𝑎𝑎 under state 𝑠𝑠; 
Obtain reward 𝑟𝑟 and the nest state 𝑠𝑠′; 
Using (7), update 𝑄𝑄(𝑠𝑠, 𝑎𝑎); 
𝑠𝑠 ← 𝑠𝑠′; 
until 𝑠𝑠 is terminated; 

until ∀𝑠𝑠, ∀𝑎𝑎, 𝑄𝑄(𝑎𝑎|𝑠𝑠) optimize; 
Output : policy 𝜋𝜋(𝑠𝑠) =   𝑄𝑄(𝑠𝑠, 𝑎𝑎)𝜋𝜋∈𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

 
Initially, the rewards are present in the Q-table. An 

agent chooses an action through a policy in the starting 
state and moves to the next state. This process is repeated 
until the overall Q-value converges to a specific value 
where the Q-table is used to solve a given problem. 

 
 

 

C. Sarsa Algorithm 

Sarsa is also based on the Q-table. The difference 
between Q-Learning and Sarsa is the value of the actual 
future action 𝑎𝑎𝑡𝑡+1 used instead of the maximum future 
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value as shown in (7). At each step of each episode, the 
next action to take is determined rather than dynamically 
determining the step at the beginning of the next step. The 
target policy and behavior policy of SARSA follow ɛ-
greedy policies which depend on Q-value. Sarsa 
eventually converges on the near-optimal policy and the 
actual optimal policy cannot be obtained. Sarsa algorithm 
is as equation (8). 

 
𝑄𝑄′(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) ← 𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) − 𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)

+ 𝛼𝛼[𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝛾𝛾(𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1)] 
(8) 

 
Algorithm 2 : Sarsa Algorithm 
Input : 𝑠𝑠, 𝑎𝑎, 𝛾𝛾, 𝛼𝛼 
Initialize 𝑄𝑄(𝑠𝑠, 𝑎𝑎): 
∀𝑠𝑠, ∀𝑎𝑎, 𝜋𝜋(𝑎𝑎|𝑠𝑠) = 1

|𝐴𝐴|; 
repeat  

Initialization state 𝑆𝑆 
repeat 

Using (3), select action 𝑎𝑎 under state 𝑠𝑠; 
Obtain reward 𝑟𝑟 and the nest state 𝑠𝑠′; 
Using (8), update 𝑄𝑄(𝑠𝑠, 𝑎𝑎); 
𝑠𝑠 ← 𝑠𝑠′; 𝑎𝑎 ← 𝑎𝑎′ 
until 𝑠𝑠 is terminated; 

until ∀𝑠𝑠, ∀𝑎𝑎, 𝑄𝑄(𝑎𝑎|𝑠𝑠) optimize; 
Output : policy 𝜋𝜋(𝑠𝑠) =   𝑄𝑄(𝑠𝑠, 𝑎𝑎)𝜋𝜋∈𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

D. Implementation of the AGV Path Planning 

In this study, the AGV utilizes Sarsa algorithm which 
can dynamically interact with its external environment 
exploring paths through trial and error, and selecting the 
optimal route based on the accumulated learning 
experiences and an action selection strategy. During the 
process of continuous interaction with the environment, 
the AGV calculates the state-action value function 𝑄𝑄(𝑠𝑠, 𝑎𝑎) 
and stores it in the Q-table. As the AGV continues to 
explore and learn, 𝑄𝑄(𝑠𝑠, 𝑎𝑎) gradually converges to stable 
values. Once the Q-table converges, the AGV selects the 
action with the highest Q-value at each state to determine 
and execute the optimal path [17].   

IV. Results and Discussion 
The simulation has been conducted in MATLAB. The 

outcomes are systematically tabulated and presented in 
graphical form to illustrate the agent’s performance under 
the designated value of parameters. This section discusses 
the findings from the simulations, comparing the 
performance of the Q-learning and Sarsa algorithm in 
terms of learning rate and discount factor, denoted by α 
and γ, respectively, and step against episode. 

A. Performance of learning rate (α) 

In the analysis of α performance for both Q-learning and 
Sarsa, the constant parameters are tabulated as in Table IV 

with discount factor, γ = 0.9. The value range of 
α=[0.1,0.9] being analyzed were categorized into three 
categories which are lower α=[0.1,0.9], and higher 
α=[0.7,0.9]. Fig. 2 and Fig. 3 shows the performance of 
average rewards with lower and higher α respectively. 
 

TABLE IV 
CONSTANT PARAMETERS TO ANALYSIS PERFORMANCE 

Notation System Parameters Values 

𝑀𝑀 Number of maximum states per 
episode 500 

𝑁𝑁𝑖𝑖  Number of iterations 100 

ε Epsilon 0.9 

 
Fig. 2 shows the impact of different learning rates on 

average rewards in two reinforcement learning (RL) 
algorithms. For lower learning values, 𝛼𝛼=0.1, there are 
significant changes in average reward, with early rewards 
gradually increasing until reaching optimal levels. 
Increasing α to 0.3 leads to higher average rewards for 
both algorithms. Both algorithms at the lower learning 
rates converge around the 40th episode and converge 
faster compared to higher rates. Q-Learning shows smaller 
deviations in average rewards than Sarsa, implying that Q-
Learning may offer more consistent and reliable 
performance in achieving optimal rewards under the given 
parameters. However, Sarsa consistently displayed 
smaller reward deviations than Q-Learning, suggesting 
Sarsa's potential for more stable performance across 
various learning rates and its advantage in achieving 
optimal rewards. Q-Learning displays a wider range of 
average rewards and converges more slowly compared to 
Sarsa, which typically exhibits a narrower range of 
rewards and converges faster.  

In Fig. 3, the values of α are set to be α=[0.7,0.9] for 
higher learning rates. When α=0.7, the rewards increase at 
first and then decrease. Then, α=0.8 decreases 
inconsistently at first and then increases, and α=0.9 
gradually decreases and reaches the lower limit of the 
average reward. Q-Learning with α=0.7 converges at the 
44th episode, while the other values of α continue to 
fluctuate over the episodes without reaching a stable state. 
In the case of Sarsa, performance with α=0.7 remains 
considerably stable compared to the other two values of α. 
The latter exhibited dramatic oscillations around the near-
optimal value without achieving a stable state. Based on 
the observations of both algorithms, higher α leads to 
instabilities and hinders convergence to an optimal policy. 
Large learning rate values can result in erratic 
performance, making it challenging to achieve stable and 
reliable learning outcomes. Striking a balance between 
exploration and exploitation is crucial to ensure 
convergence and stability in RL algorithms. 
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discount factor initiates rewards maximization of longer 
frame rewards, making agents become more forward 
looking. Action value function (Q-function) is defined as 
in equation (5).  
 

𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼𝜋𝜋 (∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑘𝑘+1 | 𝑠𝑠0 = 𝑠𝑠
𝐻𝐻−1

𝑘𝑘=0
, 𝑎𝑎0 = 𝑎𝑎)             (5) 

 
The Bellman optimality equation for the action-value 

function is introduced in equation (6). The Bellman 
equation provides a recursive decomposition of the value 
function, which will illustrate better on how decision-
making improves over time.  
 
𝑞𝑞∗(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼 [𝑅𝑅𝑡𝑡+1 +𝛾𝛾max

𝑎𝑎′ 𝑞𝑞∗(𝑆𝑆𝑡𝑡+1, 𝑎𝑎′)|𝑆𝑆𝑡𝑡 = 𝑠𝑠|𝐴𝐴𝑡𝑡=𝑎𝑎]  (6) 
 

In this study, the implementation of Bellman equation, 
one can update the value of Q-values iteratively, ensuring 
that the learning agent converges with the optimal policy 
that maximizes the cumulative rewards.  

III. Design the Algorithms 
This section demonstrates the design of the algorithms 
used in this study for path planning of AGV using the RL 
application. The objective of this study is to determine the 
most efficient route for AGVs while avoiding obstacles 
and optimizing their performance within a material 
handling environment. To solve this, reinforcement 
learning methods specifically Q-learning and Sarsa are 
implemented and compared to evaluate their effectiveness 
in AGV navigation performance. 

A. Problem Definition 

The main problem addressed in this study is the 
development of an intelligent path planning strategy for 
AGVs operating in an indoor manufacturing environment. 
The AGV must learn to navigate from a designated start 
point to a target location while optimizing travel time and 
avoiding collisions with obstacles.  

As mentioned earlier, the RL framework is defined in 
terms of its essential variables and parameters, which 
serve as the foundation for the agent's learning process. 
These include the environment state, possible actions, 
learning rate, discount factor, exploration-exploitation 
strategy, and reward function. The outputs of this learning 
process are the Q-values for each state-action pair and the 
optimal policy derived from them. Table III shows the 
input and output variables used in the design and 
implementation of the algorithms.  

TABLE III 
VARIABLES AND PARAMETERS OF ALGORITHMS 

Type of 
Variables System Parameters Notation 

Input Environment State 𝑠𝑠 

Input Action 𝑎𝑎 

Input Learning Rate 𝛼𝛼 

Input Discount Factor 𝛾𝛾 

Input Exploration-Exploitation Policy  𝜖𝜖 

Input Reward Function 𝑟𝑟 

Output Q-Value  𝑄𝑄 

Output Optimal Policy 𝜋𝜋 

 

B. Q-Learning Algorithm 

The equation of Q-learning, as described in (7), is 
applied to the Q-values in Table I. This table shows how 
each state 𝑠𝑠 and action 𝑎𝑎 pair corresponds to a specific Q-
value (𝑄𝑄(𝑠𝑠, 𝑎𝑎)). For instance, in state 𝑠𝑠𝑗𝑗 , the agent 
evaluates the potential Q-values for actions 𝑎𝑎𝑖𝑖 and 𝑎𝑎𝑖𝑖−1 to 
determine the most favorable course of action. The update 
process involves recalculating 𝑄𝑄(𝑠𝑠, 𝑎𝑎) using the 
immediate reward (𝑟𝑟) and the discounted maximum 
expected future value 𝛾𝛾 max 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)

𝑎𝑎
. Equation (7) is 

used to update the Q-value in Table I through the learning 
process, as the agent optimizes its decision-making policy 
based on the cumulative reward received over time. 
 
𝑄𝑄′(𝑠𝑠, 𝑎𝑎) ← 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼[𝑟𝑟 + 𝛾𝛾 max

𝑎𝑎′∈𝐴𝐴
𝑄𝑄(𝑠𝑠′𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)]  (7)       

 

Algorithm 1 : Q-Learning Algorithm 
Input : 𝑠𝑠, 𝑎𝑎, 𝛾𝛾, 𝛼𝛼 
Initialize 𝑄𝑄(𝑠𝑠, 𝑎𝑎): 
∀𝑠𝑠, ∀𝑎𝑎, 𝜋𝜋(𝑎𝑎|𝑠𝑠) = 1

|𝐴𝐴|; 
repeat  

Initialization state 𝑆𝑆 
repeat 

Using (3), select action 𝑎𝑎 under state 𝑠𝑠; 
Obtain reward 𝑟𝑟 and the nest state 𝑠𝑠′; 
Using (7), update 𝑄𝑄(𝑠𝑠, 𝑎𝑎); 
𝑠𝑠 ← 𝑠𝑠′; 
until 𝑠𝑠 is terminated; 

until ∀𝑠𝑠, ∀𝑎𝑎, 𝑄𝑄(𝑎𝑎|𝑠𝑠) optimize; 
Output : policy 𝜋𝜋(𝑠𝑠) =   𝑄𝑄(𝑠𝑠, 𝑎𝑎)𝜋𝜋∈𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

 
Initially, the rewards are present in the Q-table. An 

agent chooses an action through a policy in the starting 
state and moves to the next state. This process is repeated 
until the overall Q-value converges to a specific value 
where the Q-table is used to solve a given problem. 

 
 

 

C. Sarsa Algorithm 

Sarsa is also based on the Q-table. The difference 
between Q-Learning and Sarsa is the value of the actual 
future action 𝑎𝑎𝑡𝑡+1 used instead of the maximum future 
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frame rewards, making agents become more forward 
looking. Action value function (Q-function) is defined as 
in equation (5).  
 

𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼𝜋𝜋 (∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑘𝑘+1 | 𝑠𝑠0 = 𝑠𝑠
𝐻𝐻−1

𝑘𝑘=0
, 𝑎𝑎0 = 𝑎𝑎)             (5) 

 
The Bellman optimality equation for the action-value 

function is introduced in equation (6). The Bellman 
equation provides a recursive decomposition of the value 
function, which will illustrate better on how decision-
making improves over time.  
 
𝑞𝑞∗(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼 [𝑅𝑅𝑡𝑡+1 +𝛾𝛾max

𝑎𝑎′ 𝑞𝑞∗(𝑆𝑆𝑡𝑡+1, 𝑎𝑎′)|𝑆𝑆𝑡𝑡 = 𝑠𝑠|𝐴𝐴𝑡𝑡=𝑎𝑎]  (6) 
 

In this study, the implementation of Bellman equation, 
one can update the value of Q-values iteratively, ensuring 
that the learning agent converges with the optimal policy 
that maximizes the cumulative rewards.  

III. Design the Algorithms 
This section demonstrates the design of the algorithms 
used in this study for path planning of AGV using the RL 
application. The objective of this study is to determine the 
most efficient route for AGVs while avoiding obstacles 
and optimizing their performance within a material 
handling environment. To solve this, reinforcement 
learning methods specifically Q-learning and Sarsa are 
implemented and compared to evaluate their effectiveness 
in AGV navigation performance. 

A. Problem Definition 

The main problem addressed in this study is the 
development of an intelligent path planning strategy for 
AGVs operating in an indoor manufacturing environment. 
The AGV must learn to navigate from a designated start 
point to a target location while optimizing travel time and 
avoiding collisions with obstacles.  

As mentioned earlier, the RL framework is defined in 
terms of its essential variables and parameters, which 
serve as the foundation for the agent's learning process. 
These include the environment state, possible actions, 
learning rate, discount factor, exploration-exploitation 
strategy, and reward function. The outputs of this learning 
process are the Q-values for each state-action pair and the 
optimal policy derived from them. Table III shows the 
input and output variables used in the design and 
implementation of the algorithms.  

TABLE III 
VARIABLES AND PARAMETERS OF ALGORITHMS 

Type of 
Variables System Parameters Notation 

Input Environment State 𝑠𝑠 

Input Action 𝑎𝑎 

Input Learning Rate 𝛼𝛼 

Input Discount Factor 𝛾𝛾 

Input Exploration-Exploitation Policy  𝜖𝜖 

Input Reward Function 𝑟𝑟 

Output Q-Value  𝑄𝑄 

Output Optimal Policy 𝜋𝜋 

 

B. Q-Learning Algorithm 

The equation of Q-learning, as described in (7), is 
applied to the Q-values in Table I. This table shows how 
each state 𝑠𝑠 and action 𝑎𝑎 pair corresponds to a specific Q-
value (𝑄𝑄(𝑠𝑠, 𝑎𝑎)). For instance, in state 𝑠𝑠𝑗𝑗 , the agent 
evaluates the potential Q-values for actions 𝑎𝑎𝑖𝑖 and 𝑎𝑎𝑖𝑖−1 to 
determine the most favorable course of action. The update 
process involves recalculating 𝑄𝑄(𝑠𝑠, 𝑎𝑎) using the 
immediate reward (𝑟𝑟) and the discounted maximum 
expected future value 𝛾𝛾 max 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)

𝑎𝑎
. Equation (7) is 

used to update the Q-value in Table I through the learning 
process, as the agent optimizes its decision-making policy 
based on the cumulative reward received over time. 
 
𝑄𝑄′(𝑠𝑠, 𝑎𝑎) ← 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼[𝑟𝑟 + 𝛾𝛾 max

𝑎𝑎′∈𝐴𝐴
𝑄𝑄(𝑠𝑠′𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)]  (7)       

 
Algorithm 1 : Q-Learning Algorithm 
Input : 𝑠𝑠, 𝑎𝑎, 𝛾𝛾, 𝛼𝛼 
Initialize 𝑄𝑄(𝑠𝑠, 𝑎𝑎): 
∀𝑠𝑠, ∀𝑎𝑎, 𝜋𝜋(𝑎𝑎|𝑠𝑠) = 1

|𝐴𝐴|; 
repeat  

Initialization state 𝑆𝑆 
repeat 

Using (3), select action 𝑎𝑎 under state 𝑠𝑠; 
Obtain reward 𝑟𝑟 and the nest state 𝑠𝑠′; 
Using (7), update 𝑄𝑄(𝑠𝑠, 𝑎𝑎); 
𝑠𝑠 ← 𝑠𝑠′; 
until 𝑠𝑠 is terminated; 

until ∀𝑠𝑠, ∀𝑎𝑎, 𝑄𝑄(𝑎𝑎|𝑠𝑠) optimize; 
Output : policy 𝜋𝜋(𝑠𝑠) =   𝑄𝑄(𝑠𝑠, 𝑎𝑎)𝜋𝜋∈𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  
 

Initially, the rewards are present in the Q-table. An 
agent chooses an action through a policy in the starting 
state and moves to the next state. This process is repeated 
until the overall Q-value converges to a specific value 
where the Q-table is used to solve a given problem. 

C. Sarsa Algorithm 

Sarsa is also based on the Q-table. The difference 
between Q-Learning and Sarsa is the value of the actual 
future action 𝑎𝑎𝑡𝑡+1 used instead of the maximum future 
value as shown in (7). At each step of each episode, the 
next action to take is determined rather than dynamically 
determining the step at the beginning of the next step. The 
target policy and behavior policy of SARSA follow ɛ-
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discount factor initiates rewards maximization of longer 
frame rewards, making agents become more forward 
looking. Action value function (Q-function) is defined as 
in equation (5).  
 

𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼𝜋𝜋 (∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑘𝑘+1 | 𝑠𝑠0 = 𝑠𝑠
𝐻𝐻−1

𝑘𝑘=0
, 𝑎𝑎0 = 𝑎𝑎)             (5) 

 
The Bellman optimality equation for the action-value 

function is introduced in equation (6). The Bellman 
equation provides a recursive decomposition of the value 
function, which will illustrate better on how decision-
making improves over time.  
 
𝑞𝑞∗(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼 [𝑅𝑅𝑡𝑡+1 +𝛾𝛾max

𝑎𝑎′ 𝑞𝑞∗(𝑆𝑆𝑡𝑡+1, 𝑎𝑎′)|𝑆𝑆𝑡𝑡 = 𝑠𝑠|𝐴𝐴𝑡𝑡=𝑎𝑎]  (6) 
 

In this study, the implementation of Bellman equation, 
one can update the value of Q-values iteratively, ensuring 
that the learning agent converges with the optimal policy 
that maximizes the cumulative rewards.  

III. Design the Algorithms 
This section demonstrates the design of the algorithms 
used in this study for path planning of AGV using the RL 
application. The objective of this study is to determine the 
most efficient route for AGVs while avoiding obstacles 
and optimizing their performance within a material 
handling environment. To solve this, reinforcement 
learning methods specifically Q-learning and Sarsa are 
implemented and compared to evaluate their effectiveness 
in AGV navigation performance. 

A. Problem Definition 

The main problem addressed in this study is the 
development of an intelligent path planning strategy for 
AGVs operating in an indoor manufacturing environment. 
The AGV must learn to navigate from a designated start 
point to a target location while optimizing travel time and 
avoiding collisions with obstacles.  

As mentioned earlier, the RL framework is defined in 
terms of its essential variables and parameters, which 
serve as the foundation for the agent's learning process. 
These include the environment state, possible actions, 
learning rate, discount factor, exploration-exploitation 
strategy, and reward function. The outputs of this learning 
process are the Q-values for each state-action pair and the 
optimal policy derived from them. Table III shows the 
input and output variables used in the design and 
implementation of the algorithms.  

TABLE III 
VARIABLES AND PARAMETERS OF ALGORITHMS 

Type of 
Variables System Parameters Notation 

Input Environment State 𝑠𝑠 

Input Action 𝑎𝑎 

Input Learning Rate 𝛼𝛼 

Input Discount Factor 𝛾𝛾 

Input Exploration-Exploitation Policy  𝜖𝜖 

Input Reward Function 𝑟𝑟 

Output Q-Value  𝑄𝑄 

Output Optimal Policy 𝜋𝜋 

 

B. Q-Learning Algorithm 

The equation of Q-learning, as described in (7), is 
applied to the Q-values in Table I. This table shows how 
each state 𝑠𝑠 and action 𝑎𝑎 pair corresponds to a specific Q-
value (𝑄𝑄(𝑠𝑠, 𝑎𝑎)). For instance, in state 𝑠𝑠𝑗𝑗 , the agent 
evaluates the potential Q-values for actions 𝑎𝑎𝑖𝑖 and 𝑎𝑎𝑖𝑖−1 to 
determine the most favorable course of action. The update 
process involves recalculating 𝑄𝑄(𝑠𝑠, 𝑎𝑎) using the 
immediate reward (𝑟𝑟) and the discounted maximum 
expected future value 𝛾𝛾 max 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)

𝑎𝑎
. Equation (7) is 

used to update the Q-value in Table I through the learning 
process, as the agent optimizes its decision-making policy 
based on the cumulative reward received over time. 
 
𝑄𝑄′(𝑠𝑠, 𝑎𝑎) ← 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼[𝑟𝑟 + 𝛾𝛾 max

𝑎𝑎′∈𝐴𝐴
𝑄𝑄(𝑠𝑠′𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)]  (7)       

 

Algorithm 1 : Q-Learning Algorithm 
Input : 𝑠𝑠, 𝑎𝑎, 𝛾𝛾, 𝛼𝛼 
Initialize 𝑄𝑄(𝑠𝑠, 𝑎𝑎): 
∀𝑠𝑠, ∀𝑎𝑎, 𝜋𝜋(𝑎𝑎|𝑠𝑠) = 1

|𝐴𝐴|; 
repeat  

Initialization state 𝑆𝑆 
repeat 

Using (3), select action 𝑎𝑎 under state 𝑠𝑠; 
Obtain reward 𝑟𝑟 and the nest state 𝑠𝑠′; 
Using (7), update 𝑄𝑄(𝑠𝑠, 𝑎𝑎); 
𝑠𝑠 ← 𝑠𝑠′; 
until 𝑠𝑠 is terminated; 

until ∀𝑠𝑠, ∀𝑎𝑎, 𝑄𝑄(𝑎𝑎|𝑠𝑠) optimize; 
Output : policy 𝜋𝜋(𝑠𝑠) =   𝑄𝑄(𝑠𝑠, 𝑎𝑎)𝜋𝜋∈𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

 
Initially, the rewards are present in the Q-table. An 

agent chooses an action through a policy in the starting 
state and moves to the next state. This process is repeated 
until the overall Q-value converges to a specific value 
where the Q-table is used to solve a given problem. 

 
 

 

C. Sarsa Algorithm 

Sarsa is also based on the Q-table. The difference 
between Q-Learning and Sarsa is the value of the actual 
future action 𝑎𝑎𝑡𝑡+1 used instead of the maximum future 
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discount factor initiates rewards maximization of longer 
frame rewards, making agents become more forward 
looking. Action value function (Q-function) is defined as 
in equation (5).  
 

𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼𝜋𝜋 (∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑘𝑘+1 | 𝑠𝑠0 = 𝑠𝑠
𝐻𝐻−1

𝑘𝑘=0
, 𝑎𝑎0 = 𝑎𝑎)             (5) 

 
The Bellman optimality equation for the action-value 

function is introduced in equation (6). The Bellman 
equation provides a recursive decomposition of the value 
function, which will illustrate better on how decision-
making improves over time.  
 
𝑞𝑞∗(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼 [𝑅𝑅𝑡𝑡+1 +𝛾𝛾max

𝑎𝑎′ 𝑞𝑞∗(𝑆𝑆𝑡𝑡+1, 𝑎𝑎′)|𝑆𝑆𝑡𝑡 = 𝑠𝑠|𝐴𝐴𝑡𝑡=𝑎𝑎]  (6) 
 

In this study, the implementation of Bellman equation, 
one can update the value of Q-values iteratively, ensuring 
that the learning agent converges with the optimal policy 
that maximizes the cumulative rewards.  

III. Design the Algorithms 
This section demonstrates the design of the algorithms 
used in this study for path planning of AGV using the RL 
application. The objective of this study is to determine the 
most efficient route for AGVs while avoiding obstacles 
and optimizing their performance within a material 
handling environment. To solve this, reinforcement 
learning methods specifically Q-learning and Sarsa are 
implemented and compared to evaluate their effectiveness 
in AGV navigation performance. 

A. Problem Definition 

The main problem addressed in this study is the 
development of an intelligent path planning strategy for 
AGVs operating in an indoor manufacturing environment. 
The AGV must learn to navigate from a designated start 
point to a target location while optimizing travel time and 
avoiding collisions with obstacles.  

As mentioned earlier, the RL framework is defined in 
terms of its essential variables and parameters, which 
serve as the foundation for the agent's learning process. 
These include the environment state, possible actions, 
learning rate, discount factor, exploration-exploitation 
strategy, and reward function. The outputs of this learning 
process are the Q-values for each state-action pair and the 
optimal policy derived from them. Table III shows the 
input and output variables used in the design and 
implementation of the algorithms.  

TABLE III 
VARIABLES AND PARAMETERS OF ALGORITHMS 

Type of 
Variables System Parameters Notation 

Input Environment State 𝑠𝑠 

Input Action 𝑎𝑎 

Input Learning Rate 𝛼𝛼 

Input Discount Factor 𝛾𝛾 

Input Exploration-Exploitation Policy  𝜖𝜖 

Input Reward Function 𝑟𝑟 

Output Q-Value  𝑄𝑄 

Output Optimal Policy 𝜋𝜋 

 

B. Q-Learning Algorithm 

The equation of Q-learning, as described in (7), is 
applied to the Q-values in Table I. This table shows how 
each state 𝑠𝑠 and action 𝑎𝑎 pair corresponds to a specific Q-
value (𝑄𝑄(𝑠𝑠, 𝑎𝑎)). For instance, in state 𝑠𝑠𝑗𝑗 , the agent 
evaluates the potential Q-values for actions 𝑎𝑎𝑖𝑖 and 𝑎𝑎𝑖𝑖−1 to 
determine the most favorable course of action. The update 
process involves recalculating 𝑄𝑄(𝑠𝑠, 𝑎𝑎) using the 
immediate reward (𝑟𝑟) and the discounted maximum 
expected future value 𝛾𝛾 max 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)

𝑎𝑎
. Equation (7) is 

used to update the Q-value in Table I through the learning 
process, as the agent optimizes its decision-making policy 
based on the cumulative reward received over time. 
 
𝑄𝑄′(𝑠𝑠, 𝑎𝑎) ← 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼[𝑟𝑟 + 𝛾𝛾 max

𝑎𝑎′∈𝐴𝐴
𝑄𝑄(𝑠𝑠′𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)]  (7)       

 

Algorithm 1 : Q-Learning Algorithm 
Input : 𝑠𝑠, 𝑎𝑎, 𝛾𝛾, 𝛼𝛼 
Initialize 𝑄𝑄(𝑠𝑠, 𝑎𝑎): 
∀𝑠𝑠, ∀𝑎𝑎, 𝜋𝜋(𝑎𝑎|𝑠𝑠) = 1

|𝐴𝐴|; 
repeat  

Initialization state 𝑆𝑆 
repeat 

Using (3), select action 𝑎𝑎 under state 𝑠𝑠; 
Obtain reward 𝑟𝑟 and the nest state 𝑠𝑠′; 
Using (7), update 𝑄𝑄(𝑠𝑠, 𝑎𝑎); 
𝑠𝑠 ← 𝑠𝑠′; 
until 𝑠𝑠 is terminated; 

until ∀𝑠𝑠, ∀𝑎𝑎, 𝑄𝑄(𝑎𝑎|𝑠𝑠) optimize; 
Output : policy 𝜋𝜋(𝑠𝑠) =   𝑄𝑄(𝑠𝑠, 𝑎𝑎)𝜋𝜋∈𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

 
Initially, the rewards are present in the Q-table. An 

agent chooses an action through a policy in the starting 
state and moves to the next state. This process is repeated 
until the overall Q-value converges to a specific value 
where the Q-table is used to solve a given problem. 

 
 

 

C. Sarsa Algorithm 

Sarsa is also based on the Q-table. The difference 
between Q-Learning and Sarsa is the value of the actual 
future action 𝑎𝑎𝑡𝑡+1 used instead of the maximum future 
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value as shown in (7). At each step of each episode, the 
next action to take is determined rather than dynamically 
determining the step at the beginning of the next step. The 
target policy and behavior policy of SARSA follow ɛ-
greedy policies which depend on Q-value. Sarsa 
eventually converges on the near-optimal policy and the 
actual optimal policy cannot be obtained. Sarsa algorithm 
is as equation (8). 

 
𝑄𝑄′(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) ← 𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) − 𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)

+ 𝛼𝛼[𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝛾𝛾(𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1)] 
(8) 

 
Algorithm 2 : Sarsa Algorithm 
Input : 𝑠𝑠, 𝑎𝑎, 𝛾𝛾, 𝛼𝛼 
Initialize 𝑄𝑄(𝑠𝑠, 𝑎𝑎): 
∀𝑠𝑠, ∀𝑎𝑎, 𝜋𝜋(𝑎𝑎|𝑠𝑠) = 1

|𝐴𝐴|; 
repeat  

Initialization state 𝑆𝑆 
repeat 

Using (3), select action 𝑎𝑎 under state 𝑠𝑠; 
Obtain reward 𝑟𝑟 and the nest state 𝑠𝑠′; 
Using (8), update 𝑄𝑄(𝑠𝑠, 𝑎𝑎); 
𝑠𝑠 ← 𝑠𝑠′; 𝑎𝑎 ← 𝑎𝑎′ 
until 𝑠𝑠 is terminated; 

until ∀𝑠𝑠, ∀𝑎𝑎, 𝑄𝑄(𝑎𝑎|𝑠𝑠) optimize; 
Output : policy 𝜋𝜋(𝑠𝑠) =   𝑄𝑄(𝑠𝑠, 𝑎𝑎)𝜋𝜋∈𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

D. Implementation of the AGV Path Planning 

In this study, the AGV utilizes Sarsa algorithm which 
can dynamically interact with its external environment 
exploring paths through trial and error, and selecting the 
optimal route based on the accumulated learning 
experiences and an action selection strategy. During the 
process of continuous interaction with the environment, 
the AGV calculates the state-action value function 𝑄𝑄(𝑠𝑠, 𝑎𝑎) 
and stores it in the Q-table. As the AGV continues to 
explore and learn, 𝑄𝑄(𝑠𝑠, 𝑎𝑎) gradually converges to stable 
values. Once the Q-table converges, the AGV selects the 
action with the highest Q-value at each state to determine 
and execute the optimal path [17].   

IV. Results and Discussion 
The simulation has been conducted in MATLAB. The 

outcomes are systematically tabulated and presented in 
graphical form to illustrate the agent’s performance under 
the designated value of parameters. This section discusses 
the findings from the simulations, comparing the 
performance of the Q-learning and Sarsa algorithm in 
terms of learning rate and discount factor, denoted by α 
and γ, respectively, and step against episode. 

A. Performance of learning rate (α) 

In the analysis of α performance for both Q-learning and 
Sarsa, the constant parameters are tabulated as in Table IV 

with discount factor, γ = 0.9. The value range of 
α=[0.1,0.9] being analyzed were categorized into three 
categories which are lower α=[0.1,0.9], and higher 
α=[0.7,0.9]. Fig. 2 and Fig. 3 shows the performance of 
average rewards with lower and higher α respectively. 
 

TABLE IV 
CONSTANT PARAMETERS TO ANALYSIS PERFORMANCE 

Notation System Parameters Values 

𝑀𝑀 Number of maximum states per 
episode 500 

𝑁𝑁𝑖𝑖  Number of iterations 100 

ε Epsilon 0.9 

 
Fig. 2 shows the impact of different learning rates on 

average rewards in two reinforcement learning (RL) 
algorithms. For lower learning values, 𝛼𝛼=0.1, there are 
significant changes in average reward, with early rewards 
gradually increasing until reaching optimal levels. 
Increasing α to 0.3 leads to higher average rewards for 
both algorithms. Both algorithms at the lower learning 
rates converge around the 40th episode and converge 
faster compared to higher rates. Q-Learning shows smaller 
deviations in average rewards than Sarsa, implying that Q-
Learning may offer more consistent and reliable 
performance in achieving optimal rewards under the given 
parameters. However, Sarsa consistently displayed 
smaller reward deviations than Q-Learning, suggesting 
Sarsa's potential for more stable performance across 
various learning rates and its advantage in achieving 
optimal rewards. Q-Learning displays a wider range of 
average rewards and converges more slowly compared to 
Sarsa, which typically exhibits a narrower range of 
rewards and converges faster.  

In Fig. 3, the values of α are set to be α=[0.7,0.9] for 
higher learning rates. When α=0.7, the rewards increase at 
first and then decrease. Then, α=0.8 decreases 
inconsistently at first and then increases, and α=0.9 
gradually decreases and reaches the lower limit of the 
average reward. Q-Learning with α=0.7 converges at the 
44th episode, while the other values of α continue to 
fluctuate over the episodes without reaching a stable state. 
In the case of Sarsa, performance with α=0.7 remains 
considerably stable compared to the other two values of α. 
The latter exhibited dramatic oscillations around the near-
optimal value without achieving a stable state. Based on 
the observations of both algorithms, higher α leads to 
instabilities and hinders convergence to an optimal policy. 
Large learning rate values can result in erratic 
performance, making it challenging to achieve stable and 
reliable learning outcomes. Striking a balance between 
exploration and exploitation is crucial to ensure 
convergence and stability in RL algorithms. 
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discount factor initiates rewards maximization of longer 
frame rewards, making agents become more forward 
looking. Action value function (Q-function) is defined as 
in equation (5).  
 

𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼𝜋𝜋 (∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑘𝑘+1 | 𝑠𝑠0 = 𝑠𝑠
𝐻𝐻−1

𝑘𝑘=0
, 𝑎𝑎0 = 𝑎𝑎)             (5) 

 
The Bellman optimality equation for the action-value 

function is introduced in equation (6). The Bellman 
equation provides a recursive decomposition of the value 
function, which will illustrate better on how decision-
making improves over time.  
 
𝑞𝑞∗(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼 [𝑅𝑅𝑡𝑡+1 +𝛾𝛾max

𝑎𝑎′ 𝑞𝑞∗(𝑆𝑆𝑡𝑡+1, 𝑎𝑎′)|𝑆𝑆𝑡𝑡 = 𝑠𝑠|𝐴𝐴𝑡𝑡=𝑎𝑎]  (6) 
 

In this study, the implementation of Bellman equation, 
one can update the value of Q-values iteratively, ensuring 
that the learning agent converges with the optimal policy 
that maximizes the cumulative rewards.  

III. Design the Algorithms 
This section demonstrates the design of the algorithms 
used in this study for path planning of AGV using the RL 
application. The objective of this study is to determine the 
most efficient route for AGVs while avoiding obstacles 
and optimizing their performance within a material 
handling environment. To solve this, reinforcement 
learning methods specifically Q-learning and Sarsa are 
implemented and compared to evaluate their effectiveness 
in AGV navigation performance. 

A. Problem Definition 

The main problem addressed in this study is the 
development of an intelligent path planning strategy for 
AGVs operating in an indoor manufacturing environment. 
The AGV must learn to navigate from a designated start 
point to a target location while optimizing travel time and 
avoiding collisions with obstacles.  

As mentioned earlier, the RL framework is defined in 
terms of its essential variables and parameters, which 
serve as the foundation for the agent's learning process. 
These include the environment state, possible actions, 
learning rate, discount factor, exploration-exploitation 
strategy, and reward function. The outputs of this learning 
process are the Q-values for each state-action pair and the 
optimal policy derived from them. Table III shows the 
input and output variables used in the design and 
implementation of the algorithms.  

TABLE III 
VARIABLES AND PARAMETERS OF ALGORITHMS 

Type of 
Variables System Parameters Notation 

Input Environment State 𝑠𝑠 

Input Action 𝑎𝑎 

Input Learning Rate 𝛼𝛼 

Input Discount Factor 𝛾𝛾 

Input Exploration-Exploitation Policy  𝜖𝜖 

Input Reward Function 𝑟𝑟 

Output Q-Value  𝑄𝑄 

Output Optimal Policy 𝜋𝜋 

 

B. Q-Learning Algorithm 

The equation of Q-learning, as described in (7), is 
applied to the Q-values in Table I. This table shows how 
each state 𝑠𝑠 and action 𝑎𝑎 pair corresponds to a specific Q-
value (𝑄𝑄(𝑠𝑠, 𝑎𝑎)). For instance, in state 𝑠𝑠𝑗𝑗 , the agent 
evaluates the potential Q-values for actions 𝑎𝑎𝑖𝑖 and 𝑎𝑎𝑖𝑖−1 to 
determine the most favorable course of action. The update 
process involves recalculating 𝑄𝑄(𝑠𝑠, 𝑎𝑎) using the 
immediate reward (𝑟𝑟) and the discounted maximum 
expected future value 𝛾𝛾 max 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)

𝑎𝑎
. Equation (7) is 

used to update the Q-value in Table I through the learning 
process, as the agent optimizes its decision-making policy 
based on the cumulative reward received over time. 
 
𝑄𝑄′(𝑠𝑠, 𝑎𝑎) ← 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼[𝑟𝑟 + 𝛾𝛾 max

𝑎𝑎′∈𝐴𝐴
𝑄𝑄(𝑠𝑠′𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)]  (7)       

 

Algorithm 1 : Q-Learning Algorithm 
Input : 𝑠𝑠, 𝑎𝑎, 𝛾𝛾, 𝛼𝛼 
Initialize 𝑄𝑄(𝑠𝑠, 𝑎𝑎): 
∀𝑠𝑠, ∀𝑎𝑎, 𝜋𝜋(𝑎𝑎|𝑠𝑠) = 1

|𝐴𝐴|; 
repeat  

Initialization state 𝑆𝑆 
repeat 

Using (3), select action 𝑎𝑎 under state 𝑠𝑠; 
Obtain reward 𝑟𝑟 and the nest state 𝑠𝑠′; 
Using (7), update 𝑄𝑄(𝑠𝑠, 𝑎𝑎); 
𝑠𝑠 ← 𝑠𝑠′; 
until 𝑠𝑠 is terminated; 

until ∀𝑠𝑠, ∀𝑎𝑎, 𝑄𝑄(𝑎𝑎|𝑠𝑠) optimize; 
Output : policy 𝜋𝜋(𝑠𝑠) =   𝑄𝑄(𝑠𝑠, 𝑎𝑎)𝜋𝜋∈𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

 
Initially, the rewards are present in the Q-table. An 

agent chooses an action through a policy in the starting 
state and moves to the next state. This process is repeated 
until the overall Q-value converges to a specific value 
where the Q-table is used to solve a given problem. 

 
 

 

C. Sarsa Algorithm 

Sarsa is also based on the Q-table. The difference 
between Q-Learning and Sarsa is the value of the actual 
future action 𝑎𝑎𝑡𝑡+1 used instead of the maximum future 
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value as shown in (7). At each step of each episode, the 
next action to take is determined rather than dynamically 
determining the step at the beginning of the next step. The 
target policy and behavior policy of SARSA follow ɛ-
greedy policies which depend on Q-value. Sarsa 
eventually converges on the near-optimal policy and the 
actual optimal policy cannot be obtained. Sarsa algorithm 
is as equation (8). 

 
𝑄𝑄′(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) ← 𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) − 𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)

+ 𝛼𝛼[𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝛾𝛾(𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1)] 
(8) 

 
Algorithm 2 : Sarsa Algorithm 
Input : 𝑠𝑠, 𝑎𝑎, 𝛾𝛾, 𝛼𝛼 
Initialize 𝑄𝑄(𝑠𝑠, 𝑎𝑎): 
∀𝑠𝑠, ∀𝑎𝑎, 𝜋𝜋(𝑎𝑎|𝑠𝑠) = 1

|𝐴𝐴|; 
repeat  

Initialization state 𝑆𝑆 
repeat 

Using (3), select action 𝑎𝑎 under state 𝑠𝑠; 
Obtain reward 𝑟𝑟 and the nest state 𝑠𝑠′; 
Using (8), update 𝑄𝑄(𝑠𝑠, 𝑎𝑎); 
𝑠𝑠 ← 𝑠𝑠′; 𝑎𝑎 ← 𝑎𝑎′ 
until 𝑠𝑠 is terminated; 

until ∀𝑠𝑠, ∀𝑎𝑎, 𝑄𝑄(𝑎𝑎|𝑠𝑠) optimize; 
Output : policy 𝜋𝜋(𝑠𝑠) =   𝑄𝑄(𝑠𝑠, 𝑎𝑎)𝜋𝜋∈𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

D. Implementation of the AGV Path Planning 

In this study, the AGV utilizes Sarsa algorithm which 
can dynamically interact with its external environment 
exploring paths through trial and error, and selecting the 
optimal route based on the accumulated learning 
experiences and an action selection strategy. During the 
process of continuous interaction with the environment, 
the AGV calculates the state-action value function 𝑄𝑄(𝑠𝑠, 𝑎𝑎) 
and stores it in the Q-table. As the AGV continues to 
explore and learn, 𝑄𝑄(𝑠𝑠, 𝑎𝑎) gradually converges to stable 
values. Once the Q-table converges, the AGV selects the 
action with the highest Q-value at each state to determine 
and execute the optimal path [17].   

IV. Results and Discussion 
The simulation has been conducted in MATLAB. The 

outcomes are systematically tabulated and presented in 
graphical form to illustrate the agent’s performance under 
the designated value of parameters. This section discusses 
the findings from the simulations, comparing the 
performance of the Q-learning and Sarsa algorithm in 
terms of learning rate and discount factor, denoted by α 
and γ, respectively, and step against episode. 

A. Performance of learning rate (α) 

In the analysis of α performance for both Q-learning and 
Sarsa, the constant parameters are tabulated as in Table IV 

with discount factor, γ = 0.9. The value range of 
α=[0.1,0.9] being analyzed were categorized into three 
categories which are lower α=[0.1,0.9], and higher 
α=[0.7,0.9]. Fig. 2 and Fig. 3 shows the performance of 
average rewards with lower and higher α respectively. 
 

TABLE IV 
CONSTANT PARAMETERS TO ANALYSIS PERFORMANCE 

Notation System Parameters Values 

𝑀𝑀 Number of maximum states per 
episode 500 

𝑁𝑁𝑖𝑖  Number of iterations 100 

ε Epsilon 0.9 

 
Fig. 2 shows the impact of different learning rates on 

average rewards in two reinforcement learning (RL) 
algorithms. For lower learning values, 𝛼𝛼=0.1, there are 
significant changes in average reward, with early rewards 
gradually increasing until reaching optimal levels. 
Increasing α to 0.3 leads to higher average rewards for 
both algorithms. Both algorithms at the lower learning 
rates converge around the 40th episode and converge 
faster compared to higher rates. Q-Learning shows smaller 
deviations in average rewards than Sarsa, implying that Q-
Learning may offer more consistent and reliable 
performance in achieving optimal rewards under the given 
parameters. However, Sarsa consistently displayed 
smaller reward deviations than Q-Learning, suggesting 
Sarsa's potential for more stable performance across 
various learning rates and its advantage in achieving 
optimal rewards. Q-Learning displays a wider range of 
average rewards and converges more slowly compared to 
Sarsa, which typically exhibits a narrower range of 
rewards and converges faster.  

In Fig. 3, the values of α are set to be α=[0.7,0.9] for 
higher learning rates. When α=0.7, the rewards increase at 
first and then decrease. Then, α=0.8 decreases 
inconsistently at first and then increases, and α=0.9 
gradually decreases and reaches the lower limit of the 
average reward. Q-Learning with α=0.7 converges at the 
44th episode, while the other values of α continue to 
fluctuate over the episodes without reaching a stable state. 
In the case of Sarsa, performance with α=0.7 remains 
considerably stable compared to the other two values of α. 
The latter exhibited dramatic oscillations around the near-
optimal value without achieving a stable state. Based on 
the observations of both algorithms, higher α leads to 
instabilities and hinders convergence to an optimal policy. 
Large learning rate values can result in erratic 
performance, making it challenging to achieve stable and 
reliable learning outcomes. Striking a balance between 
exploration and exploitation is crucial to ensure 
convergence and stability in RL algorithms. 
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discount factor initiates rewards maximization of longer 
frame rewards, making agents become more forward 
looking. Action value function (Q-function) is defined as 
in equation (5).  
 

𝑄𝑄𝜋𝜋(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼𝜋𝜋 (∑ 𝛾𝛾𝑘𝑘𝑟𝑟𝑘𝑘+1 | 𝑠𝑠0 = 𝑠𝑠
𝐻𝐻−1

𝑘𝑘=0
, 𝑎𝑎0 = 𝑎𝑎)             (5) 

 
The Bellman optimality equation for the action-value 

function is introduced in equation (6). The Bellman 
equation provides a recursive decomposition of the value 
function, which will illustrate better on how decision-
making improves over time.  
 
𝑞𝑞∗(𝑠𝑠, 𝑎𝑎) = 𝔼𝔼 [𝑅𝑅𝑡𝑡+1 +𝛾𝛾max

𝑎𝑎′ 𝑞𝑞∗(𝑆𝑆𝑡𝑡+1, 𝑎𝑎′)|𝑆𝑆𝑡𝑡 = 𝑠𝑠|𝐴𝐴𝑡𝑡=𝑎𝑎]  (6) 
 

In this study, the implementation of Bellman equation, 
one can update the value of Q-values iteratively, ensuring 
that the learning agent converges with the optimal policy 
that maximizes the cumulative rewards.  

III. Design the Algorithms 
This section demonstrates the design of the algorithms 
used in this study for path planning of AGV using the RL 
application. The objective of this study is to determine the 
most efficient route for AGVs while avoiding obstacles 
and optimizing their performance within a material 
handling environment. To solve this, reinforcement 
learning methods specifically Q-learning and Sarsa are 
implemented and compared to evaluate their effectiveness 
in AGV navigation performance. 

A. Problem Definition 

The main problem addressed in this study is the 
development of an intelligent path planning strategy for 
AGVs operating in an indoor manufacturing environment. 
The AGV must learn to navigate from a designated start 
point to a target location while optimizing travel time and 
avoiding collisions with obstacles.  

As mentioned earlier, the RL framework is defined in 
terms of its essential variables and parameters, which 
serve as the foundation for the agent's learning process. 
These include the environment state, possible actions, 
learning rate, discount factor, exploration-exploitation 
strategy, and reward function. The outputs of this learning 
process are the Q-values for each state-action pair and the 
optimal policy derived from them. Table III shows the 
input and output variables used in the design and 
implementation of the algorithms.  

TABLE III 
VARIABLES AND PARAMETERS OF ALGORITHMS 

Type of 
Variables System Parameters Notation 

Input Environment State 𝑠𝑠 

Input Action 𝑎𝑎 

Input Learning Rate 𝛼𝛼 

Input Discount Factor 𝛾𝛾 

Input Exploration-Exploitation Policy  𝜖𝜖 

Input Reward Function 𝑟𝑟 

Output Q-Value  𝑄𝑄 

Output Optimal Policy 𝜋𝜋 

 

B. Q-Learning Algorithm 

The equation of Q-learning, as described in (7), is 
applied to the Q-values in Table I. This table shows how 
each state 𝑠𝑠 and action 𝑎𝑎 pair corresponds to a specific Q-
value (𝑄𝑄(𝑠𝑠, 𝑎𝑎)). For instance, in state 𝑠𝑠𝑗𝑗 , the agent 
evaluates the potential Q-values for actions 𝑎𝑎𝑖𝑖 and 𝑎𝑎𝑖𝑖−1 to 
determine the most favorable course of action. The update 
process involves recalculating 𝑄𝑄(𝑠𝑠, 𝑎𝑎) using the 
immediate reward (𝑟𝑟) and the discounted maximum 
expected future value 𝛾𝛾 max 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)

𝑎𝑎
. Equation (7) is 

used to update the Q-value in Table I through the learning 
process, as the agent optimizes its decision-making policy 
based on the cumulative reward received over time. 
 
𝑄𝑄′(𝑠𝑠, 𝑎𝑎) ← 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼[𝑟𝑟 + 𝛾𝛾 max

𝑎𝑎′∈𝐴𝐴
𝑄𝑄(𝑠𝑠′𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)]  (7)       

 

Algorithm 1 : Q-Learning Algorithm 
Input : 𝑠𝑠, 𝑎𝑎, 𝛾𝛾, 𝛼𝛼 
Initialize 𝑄𝑄(𝑠𝑠, 𝑎𝑎): 
∀𝑠𝑠, ∀𝑎𝑎, 𝜋𝜋(𝑎𝑎|𝑠𝑠) = 1

|𝐴𝐴|; 
repeat  

Initialization state 𝑆𝑆 
repeat 

Using (3), select action 𝑎𝑎 under state 𝑠𝑠; 
Obtain reward 𝑟𝑟 and the nest state 𝑠𝑠′; 
Using (7), update 𝑄𝑄(𝑠𝑠, 𝑎𝑎); 
𝑠𝑠 ← 𝑠𝑠′; 
until 𝑠𝑠 is terminated; 

until ∀𝑠𝑠, ∀𝑎𝑎, 𝑄𝑄(𝑎𝑎|𝑠𝑠) optimize; 
Output : policy 𝜋𝜋(𝑠𝑠) =   𝑄𝑄(𝑠𝑠, 𝑎𝑎)𝜋𝜋∈𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

 
Initially, the rewards are present in the Q-table. An 

agent chooses an action through a policy in the starting 
state and moves to the next state. This process is repeated 
until the overall Q-value converges to a specific value 
where the Q-table is used to solve a given problem. 

 
 

 

C. Sarsa Algorithm 

Sarsa is also based on the Q-table. The difference 
between Q-Learning and Sarsa is the value of the actual 
future action 𝑎𝑎𝑡𝑡+1 used instead of the maximum future 
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greedy policies which depend on Q-value. Sarsa 
eventually converges on the near-optimal policy and the 
actual optimal policy cannot be obtained. Sarsa algorithm 
is as equation (8). 

 
𝑄𝑄′(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) ← 𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) − 𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)

+ 𝛼𝛼[𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝛾𝛾(𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1)] 
(8) 

 
Algorithm 2 : Sarsa Algorithm 
Input : 𝑠𝑠, 𝑎𝑎, 𝛾𝛾, 𝛼𝛼 
Initialize 𝑄𝑄(𝑠𝑠, 𝑎𝑎): 
∀𝑠𝑠, ∀𝑎𝑎, 𝜋𝜋(𝑎𝑎|𝑠𝑠) = 1

|𝐴𝐴|; 
repeat  

Initialization state 𝑆𝑆 
repeat 

Using (3), select action 𝑎𝑎 under state 𝑠𝑠; 
Obtain reward 𝑟𝑟 and the nest state 𝑠𝑠′; 
Using (8), update 𝑄𝑄(𝑠𝑠, 𝑎𝑎); 
𝑠𝑠 ← 𝑠𝑠′; 𝑎𝑎 ← 𝑎𝑎′ 
until 𝑠𝑠 is terminated; 

until ∀𝑠𝑠, ∀𝑎𝑎, 𝑄𝑄(𝑎𝑎|𝑠𝑠) optimize; 
Output : policy 𝜋𝜋(𝑠𝑠) =   𝑄𝑄(𝑠𝑠, 𝑎𝑎)𝜋𝜋∈𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

D. Implementation of the AGV Path Planning 

In this study, the AGV utilizes Sarsa algorithm which 
can dynamically interact with its external environment 
exploring paths through trial and error, and selecting the 
optimal route based on the accumulated learning 
experiences and an action selection strategy. During the 
process of continuous interaction with the environment, 
the AGV calculates the state-action value function 𝑄𝑄(𝑠𝑠, 𝑎𝑎) 
and stores it in the Q-table. As the AGV continues to 
explore and learn, 𝑄𝑄(𝑠𝑠, 𝑎𝑎) gradually converges to stable 
values. Once the Q-table converges, the AGV selects the 
action with the highest Q-value at each state to determine 
and execute the optimal path [17].   

IV. Results and Discussion 
The simulation has been conducted in MATLAB. The 

outcomes are systematically tabulated and presented in 
graphical form to illustrate the agent’s performance under 
the designated value of parameters. This section discusses 
the findings from the simulations, comparing the 
performance of the Q-learning and Sarsa algorithm in 
terms of learning rate and discount factor, denoted by α 
and γ, respectively, and step against episode. 

A. Performance of learning rate (α) 

In the analysis of α performance for both Q-learning and 
Sarsa, the constant parameters are tabulated as in Table IV 
with discount factor, γ = 0.9. The value range of 
α=[0.1,0.9] being analyzed were categorized into three 
categories which are lower α=[0.1,0.9], and higher 

α=[0.7,0.9]. Fig. 2 and Fig. 3 shows the performance of 
average rewards with lower and higher α respectively. 

 
 

TABLE IV 
CONSTANT PARAMETERS TO ANALYSIS PERFORMANCE 

Notation System Parameters Values 

𝑀𝑀 Number of maximum states per 
episode 500 

𝑁𝑁𝑖𝑖  Number of iterations 100 

ε Epsilon 0.9 

 
 
Fig. 2 shows the impact of different learning rates on 

average rewards in two reinforcement learning (RL) 
algorithms. For lower learning values, 𝛼𝛼=0.1, there are 
significant changes in average reward, with early rewards 
gradually increasing until reaching optimal levels. 
Increasing α to 0.3 leads to higher average rewards for 
both algorithms. Both algorithms at the lower learning 
rates converge around the 40th episode and converge 
faster compared to higher rates. Q-Learning shows smaller 
deviations in average rewards than Sarsa, implying that Q-
Learning may offer more consistent and reliable 
performance in achieving optimal rewards under the given 
parameters. However, Sarsa consistently displayed 
smaller reward deviations than Q-Learning, suggesting 
Sarsa's potential for more stable performance across 
various learning rates and its advantage in achieving 
optimal rewards. Q-Learning displays a wider range of 
average rewards and converges more slowly compared to 
Sarsa, which typically exhibits a narrower range of 
rewards and converges faster.  

In Fig. 3, the values of α are set to be α=[0.7,0.9] for 
higher learning rates. When α=0.7, the rewards increase at 
first and then decrease. Then, α=0.8 decreases 
inconsistently at first and then increases, and α=0.9 
gradually decreases and reaches the lower limit of the 
average reward. Q-Learning with α=0.7 converges at the 
44th episode, while the other values of α continue to 
fluctuate over the episodes without reaching a stable state. 
In the case of Sarsa, performance with α=0.7 remains 
considerably stable compared to the other two values of α. 
The latter exhibited dramatic oscillations around the near-
optimal value without achieving a stable state. Based on 
the observations of both algorithms, higher α leads to 
instabilities and hinders convergence to an optimal policy. 
Large learning rate values can result in erratic 
performance, making it challenging to achieve stable and 
reliable learning outcomes. Striking a balance between 
exploration and exploitation is crucial to ensure 
convergence and stability in RL algorithms. 
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value as shown in (7). At each step of each episode, the 
next action to take is determined rather than dynamically 
determining the step at the beginning of the next step. The 
target policy and behavior policy of SARSA follow ɛ-
greedy policies which depend on Q-value. Sarsa 
eventually converges on the near-optimal policy and the 
actual optimal policy cannot be obtained. Sarsa algorithm 
is as equation (8). 

 
𝑄𝑄′(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) ← 𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) − 𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)

+ 𝛼𝛼[𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝛾𝛾(𝑠𝑠𝑡𝑡+1, 𝑎𝑎𝑡𝑡+1)] 
(8) 

 
Algorithm 2 : Sarsa Algorithm 
Input : 𝑠𝑠, 𝑎𝑎, 𝛾𝛾, 𝛼𝛼 
Initialize 𝑄𝑄(𝑠𝑠, 𝑎𝑎): 
∀𝑠𝑠, ∀𝑎𝑎, 𝜋𝜋(𝑎𝑎|𝑠𝑠) = 1

|𝐴𝐴|; 
repeat  

Initialization state 𝑆𝑆 
repeat 

Using (3), select action 𝑎𝑎 under state 𝑠𝑠; 
Obtain reward 𝑟𝑟 and the nest state 𝑠𝑠′; 
Using (8), update 𝑄𝑄(𝑠𝑠, 𝑎𝑎); 
𝑠𝑠 ← 𝑠𝑠′; 𝑎𝑎 ← 𝑎𝑎′ 
until 𝑠𝑠 is terminated; 

until ∀𝑠𝑠, ∀𝑎𝑎, 𝑄𝑄(𝑎𝑎|𝑠𝑠) optimize; 
Output : policy 𝜋𝜋(𝑠𝑠) =   𝑄𝑄(𝑠𝑠, 𝑎𝑎)𝜋𝜋∈𝐴𝐴

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

D. Implementation of the AGV Path Planning 

In this study, the AGV utilizes Sarsa algorithm which 
can dynamically interact with its external environment 
exploring paths through trial and error, and selecting the 
optimal route based on the accumulated learning 
experiences and an action selection strategy. During the 
process of continuous interaction with the environment, 
the AGV calculates the state-action value function 𝑄𝑄(𝑠𝑠, 𝑎𝑎) 
and stores it in the Q-table. As the AGV continues to 
explore and learn, 𝑄𝑄(𝑠𝑠, 𝑎𝑎) gradually converges to stable 
values. Once the Q-table converges, the AGV selects the 
action with the highest Q-value at each state to determine 
and execute the optimal path [17].   

IV. Results and Discussion 
The simulation has been conducted in MATLAB. The 

outcomes are systematically tabulated and presented in 
graphical form to illustrate the agent’s performance under 
the designated value of parameters. This section discusses 
the findings from the simulations, comparing the 
performance of the Q-learning and Sarsa algorithm in 
terms of learning rate and discount factor, denoted by α 
and γ, respectively, and step against episode. 

A. Performance of learning rate (α) 

In the analysis of α performance for both Q-learning and 
Sarsa, the constant parameters are tabulated as in Table IV 

with discount factor, γ = 0.9. The value range of 
α=[0.1,0.9] being analyzed were categorized into three 
categories which are lower α=[0.1,0.9], and higher 
α=[0.7,0.9]. Fig. 2 and Fig. 3 shows the performance of 
average rewards with lower and higher α respectively. 
 

TABLE IV 
CONSTANT PARAMETERS TO ANALYSIS PERFORMANCE 

Notation System Parameters Values 

𝑀𝑀 Number of maximum states per 
episode 500 

𝑁𝑁𝑖𝑖  Number of iterations 100 

ε Epsilon 0.9 

 
Fig. 2 shows the impact of different learning rates on 

average rewards in two reinforcement learning (RL) 
algorithms. For lower learning values, 𝛼𝛼=0.1, there are 
significant changes in average reward, with early rewards 
gradually increasing until reaching optimal levels. 
Increasing α to 0.3 leads to higher average rewards for 
both algorithms. Both algorithms at the lower learning 
rates converge around the 40th episode and converge 
faster compared to higher rates. Q-Learning shows smaller 
deviations in average rewards than Sarsa, implying that Q-
Learning may offer more consistent and reliable 
performance in achieving optimal rewards under the given 
parameters. However, Sarsa consistently displayed 
smaller reward deviations than Q-Learning, suggesting 
Sarsa's potential for more stable performance across 
various learning rates and its advantage in achieving 
optimal rewards. Q-Learning displays a wider range of 
average rewards and converges more slowly compared to 
Sarsa, which typically exhibits a narrower range of 
rewards and converges faster.  

In Fig. 3, the values of α are set to be α=[0.7,0.9] for 
higher learning rates. When α=0.7, the rewards increase at 
first and then decrease. Then, α=0.8 decreases 
inconsistently at first and then increases, and α=0.9 
gradually decreases and reaches the lower limit of the 
average reward. Q-Learning with α=0.7 converges at the 
44th episode, while the other values of α continue to 
fluctuate over the episodes without reaching a stable state. 
In the case of Sarsa, performance with α=0.7 remains 
considerably stable compared to the other two values of α. 
The latter exhibited dramatic oscillations around the near-
optimal value without achieving a stable state. Based on 
the observations of both algorithms, higher α leads to 
instabilities and hinders convergence to an optimal policy. 
Large learning rate values can result in erratic 
performance, making it challenging to achieve stable and 
reliable learning outcomes. Striking a balance between 
exploration and exploitation is crucial to ensure 
convergence and stability in RL algorithms. 
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Fig. 2.  Performance of average reward with lower α for (a) Q-

Learning; (b) Sarsa 
 

 

 
Fig. 3.  Performance of average reward with higher α for (a) Q-

Learning; (b) Sarsa 

B. Performance of discount factor (γ) 

In the performance analysis of the discount factor of Q-
learning and Sarsa, constant parameters have been used 
for both. The parameters include the number of maximum 
states per episode, the number of episodes, ε and α= [7, 
19]. The parameter values are tabulated in Table IV with 
α=0.7. The value range of γ=[0.1,0.9] being analyzed was 
categorized into three categories which are lower γ 
=[0.1,0.3] and higher γ =[0.7,0.9].  

Fig. 4 shows the cumulative reward for each episode 
with various γ. Based on the analysis of learning factor, α, 
the best α value that produces the highest generation value 
of average rewards for Q-Learning is 0.5 while that for 
Sarsa is 0.6. For comparison purposes, 0.5 of α was taken 
in the performance analysis of the discount factor. This 
value is used for the performance analysis of γ as the fixed 
parameter setting. 
The study assessed the influence of the discount factor, γ 
on the Q-Learning and Sarsa algorithms by analyzing its 
performance in lower and higher ranges, based on the 
results presented in Fig. 5. Within the range γ = [0.1, 0.3], 
Q-Learning achieved a cumulative reward of 3.33 %, 

which was higher than Sarsa's 0.33 %. Although both 
algorithms produced negative cumulative rewards in each 
of the 100 episodes, Q-Learning performed better, 
demonstrating a larger positive reward percentage and a 
more focused distribution of rewards within a smaller 
range. 
 

 
Fig. 4.  Performance of discount factor with various γ for (a) Q-

Learning; (b) Sarsa 
Transitioning to γ = [0.4, 0.6], Sarsa was the best with 

a significantly larger positive cumulative reward than Q-
Learning. In this range, Sarsa outperformed Q-Learning 
by exhibiting a more converging range of average 
rewards. As γ values increased to γ = [0.7, 0.9], Q-
Learning maintained its dominance, reaching a solid 
positive cumulative reward of 78% compared to Sarsa's 
significantly larger positive cumulative reward over the 
episodes. Both algorithms achieved their highest positive 
cumulative rewards at γ = 0.9, indicating a preference for 
long-term benefits over immediate gains at higher γ 
values. 

 
Fig. 5. Performance of discount factor with higher γ for (a) Q-Learning; 

(b) Sarsa 
 

Fig. 5 shows that Q-Learning outperformed Sarsa for 
cumulative reward at discount factor levels γ =[0.7,0.9]. 
Q-Learning received a positive cumulative reward of 
78%, whereas Sarsa received an even higher positive 
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cumulative reward of 82.66%. Notably, Q-Learning had a 
higher percentage by 86% of cumulative rewards falling 
between -20 and 100, compared to Sarsa's by 84% within 
the broader range of -60 to 50.  

This demonstrates ability Q-Learning's capacity to 
accumulate rewards across several episodes, 
outperforming Sarsa's performance. The higher 
cumulative reward gained by Q-Learning demonstrates its 
capacity to successfully learn and utilise rewards within 
the limitations imposed. Q-Learning converged earlier 
than Sarsa, around the, respectively, 6th and 9th episodes, 
but had higher fluctuations. Thus, analysing discount 
factor performance demonstrates its remarkable influence 
on cumulative rewards and convergence speed in Q-
Learning and Sarsa algorithms, with consequences for 
learning efficiency and reward outcomes. 

C. Performance of episode steps 

The performance analysis of Q-learning and Sarsa 
algorithms, conducted under constant parameters 
including γ=0.9, selected based on the highest cumulative 
rewards observed. Fig. 6.(a) shows the performance in 
terms of episode steps, indicating notable differences in 
their exploration and convergence behaviors Q-Learning 
has a greater maximum route length of 337, indicating a 
more extensive exploration process and possibly slower 
convergence to optimum policy, whereas Sarsa has a 
shorter maximum path length of 210, implying faster 
convergence. Moreover, Q-Learning's longer total 
execution time implies greater computational demands or 
slower convergence relative to Sarsa. This could be 
attributed to Q-Learning's broader exploration, resulting in 
a more comprehensive search for optimal policy and 
longer convergence time, while Sarsa's focused 
exploration enables relatively quicker convergence.  
 Fig. 6.(b) shows the performance of total agent steps, 
with Q-Learning demonstrating phased increases and 
Sarsa displaying a more gradual rise with an early spike. 
The higher overall steps required by Q-Learning indicate 
its exploration of a larger action-state space or prolonged 
convergence, highlighting the trade-off between 
exploration and exploitation.  

Q-Learning's phased increase suggests a balance 
between intensive exploration and subsequent 
exploitation, potentially leading to the discovery of 
optimal policy, whereas Sarsa's more gradual exploration 
may prioritize efficiency but risks missing optimal 
solutions. Sarsa focuses on the agent's performance during 
the learning process by considering the exploration-
exploitation trade-off and incorporating an epsilon-greedy 
policy and it can learn to avoid dangerous actions more 
quickly than Q-learning. It updates its Q-values based on 
the current state-action pair and the immediate reward, 
considering the next action chosen according to the policy 
being followed.  
 

 
Fig. 6.  Performance of (a) episode steps (b) total agent steps. 
 

Sarsa is recommended for situations where the agent's 
performance during the learning process matters, and the 
agent's actions can directly impact the learning process 
itself, where the agent prefers a safer path and minimizes 
the risks during the learning phase. 

V. Conclusion 
In this paper, the AGV path planning was addressed 
utilizing the RL, Q-learning and Sarsa. AGV performance 
was analyzed by comparison between Q-learning and 
Sarsa is analyzed based on learning rate (α), discount 
factor (γ), and step against episode. The results 
demonstrated that the optimal rate (𝛼𝛼) for Q-Learning and 
Sarsa is 0.5 and 0.6 respectively, while both algorithms 
perform better high discount factors (𝛾𝛾 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 1). The 
convergence time of Sarsa was greater than that of Q-
learning, indicating that Q-learning fewer steps to 
stabilize. 

The dissimilar update rules of Q-learning and Sarsa 
render them suitable for different scenarios. Q-learning 
focuses on identifying the optimal policy by updating Q-
values based on the maximum expected future reward, 
making it suitable for environments where exploration is 
important. It can be effectively used in a practice phase 
where the agent explores using an epsilon-greedy policy 
(𝜀𝜀), followed by an optimal greedy policy during an 
important deployment. On the other hand, Sarsa’s on 
policy approach makes it beneficial in scenarios requiring 
more stable learning during the training phase. For future 
work, visualization of AGV performance can be further 
developed to apply in AGV system for solving material 
handling problem, contributing to the future of Industry 
4.0 in the Asian region. 
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