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Abstract – This study examines the integration of Virtual Power Plants (VPPs) to optimize grid 

operations using renewable energy, Energy Storage Systems (ESS), Electric Vehicles (EVs), and 

HVAC systems. It analyzes the effects of shading and weather uncertainties on solar power 

generation and employs adaptive control strategies to manage ESS and EV battery performance. 

The findings reveal that environmental factors, particularly shading and seasonal variations, 
significantly impact solar output. Adaptive control strategies effectively mitigate variability, 

improving energy storage performance and maintaining a stable State of Charge (SOC) in ESS and 

EV batteries. VPP integration enhances grid stability, optimizes power utilization, and improves 

system reliability. This research underscores the critical role of VPPs in addressing modern energy 

challenges by employing advanced energy management techniques. By adapting to uncertainties 

and optimizing resources, VPPs contribute to more efficient, reliable, and sustainable grid 

operations, supporting a resilient energy infrastructure. 
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I. Introduction 

In the realm of contemporary energy management, the 

incorporation of VPPs signifies a fundamental change 
towards a more dynamic and robust grid infrastructure. 

VPPs involve a wide range of energy resources and 

technologies, such as PV systems [1], ESS [1] – [3], 

electric vehicles (EVs) [1],[4] – [7], and HVAC units 

[1],[8] – [9]. These components come together to create an 

advanced energy ecosystem capable of producing, storing, 

and distributing electricity in a highly efficient and 

adaptable manner. The incorporation of VPPs into 

established grid networks, like the IEEE 14 bus system, 

shows great potential for improving grid stability, 

reliability, and sustainability [1],[10] – [11]. 
At the core of VPP optimization is the utilization of 

sophisticated adaptive algorithms, among which adaptive 

control strategy stands out as a key tool for optimizing 

multi-objective functions [1],[12] – [13]. Adaptive control 

strategies empower VPPs to dynamically adapt energy 

generation, storage, and consumption tactics in 

accordance with changing grid conditions and user 

requirements. Through the reduction of operational 

expenses, maximization of power utilization, and 

mitigation of peak demand, adaptive control strategies 

boost the overall efficiency and efficacy of VPP 

operations. Furthermore, the incorporation of VPPs with 

adaptive [1],[13] aids in effectively coordinating various 

energy resources and technologies, ultimately enhancing 

grid flexibility and resilience. By employing these 

strategies and techniques, VPPs can dynamically adjust to 

fluctuations in grid conditions, minimize possible 

disruptions, and efficiently manage resource distribution 

in a timely manner. 
In this all-encompassing investigation, we explore the 

complex interaction among VPP integration, employing 

adaptive control strategies, and grid management 

strategies. By conducting a thorough analysis of case 

studies and simulation findings, our goal is to clarify the 

transformative capacity of these technologies in shaping a 

sustainable and adaptable energy environment. Through 

an examination of the synergies between VPPs, adaptive 

control strategies, and grid infrastructure, our aim is to 

provide insights into the obstacles and possibilities linked 

to contemporary energy management practices, while also 
laying the groundwork for the advancement of more 

robust, effective, and environmentally friendly energy 

systems. 
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II. System Model 

System modeling of VPP comprised of PV system, 
ESS, EVs and heat, ventilation and air conditioning 

(HVAC) and integration of VPP into electrical grid system 

with 14 buses.   

A. Modeling of PV system 

The PV system, which is considered a fundamental 

component of renewable energy, functions by producing 

electricity through the utilization of sunlight. In the 

context of VPPs, which serve as a collective platform for 

various distributed PV systems, there is an effective 

optimization of grid stability and reliability. Moreover, the 

PV systems play a significant role in the sustainable 
production of energy by efficiently harnessing solar 

energy, thus reducing the reliance on fossil fuels and 

effectively mitigating the environmental impacts 

associated with them. Within the framework of a VPP, the 

PV model takes into account a multitude of factors, 

including solar irradiance, temperature effects, shading 

analysis, inverter efficiency, and uncertainties as given by 

equation (1). Through the consideration and integration of 

these variables, the PV model is able to accurately predict 

the power output of the PV system, thereby facilitating its 

optimal integration within VPP frameworks. This optimal 

integration ultimately leads to enhanced management of 
renewable energy and a greater level of stability within the 

grid [1]. 

 

𝑃(𝑡)𝑜𝑢𝑡 = 𝑃(𝑡)𝑚𝑎𝑥[1 − 𝛽𝑇 (𝑇𝑡 − 𝑇𝑆𝑇𝐶)] × (1 −
𝛼𝑠ℎ𝑎𝑑𝑖𝑛𝑔) × ɳ𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟 × 𝐺(𝑡) × 𝜖(𝑡)                               (1) 

 

where, P(t)max= maximum power of PV panel (in Watt), 

βT= Temperature coefficient, TSTC= Standard test 

condition temperature, αshading= Shading effect, ɳinverter= 

Inverter’s efficiency, G(t)= Solar Irradiance, T(t)= 
Ambient temperature, ε(t) = Stochastic uncertainty. 

B. Modeling of ESS 

 ESS have a crucial and indispensable function in the 

realm of VPPs, as they enable the seamless and effective 

integration of renewable energy sources such as solar 

power. The ability to store surplus energy during times of 

low demand and subsequently supply it during periods of 

high demand is a vital aspect of ESS, as it greatly 

contributes to the overall stability and reliability of the 

power grid. Moreover, the inclusion of energy storage 

systems within VPPs not only enhances grid stability but 

also facilitates the optimal utilization of renewable 
resources, ensuring that they are harnessed to their fullest 

potential for the benefit of the entire system. The dynamics 

of an energy storage system within a VPP are effectively 

captured and represented by the equations (2) and (3), 

which play a crucial role in understanding and managing 

the system's behavior [2-3]. The equation (2) takes into 

account various factors such as charging/discharging 

efficiencies, operational costs, and stochastic 

uncertainties, all of which have a significant impact on the 

system's state of charge over time. By incorporating these 

elements, the equation (3) offers a comprehensive 

framework for optimizing energy storage operations, 
thereby contributing to the overall enhancement of grid 

stability and the efficient utilization of renewable energy 

within Virtual Power Plants. In essence, it serves as a 

fundamental pillar in achieving the goals of maximizing 

the potential of energy storage systems and promoting 

sustainable energy practices in VPPs [1].  

 
𝑑𝐸(𝑡)𝐸𝑆𝑆

𝑑𝑡
= ɳ𝑐ℎ𝑎𝑟𝑔𝑖𝑔 × 𝑃(𝑡)𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 −

1

ɳ𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
×

𝑃(𝑡)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔                                    (2) 

𝐸(𝑡 + 𝑑𝑡)𝐸𝑆𝑆 = 𝐸(𝑡)𝐸𝑆𝑆 +
𝑑𝐸(𝑡)𝐸𝑆𝑆

𝑑𝑡
 × 𝑑𝑡 + 𝜀(𝑡)          (3) 

 

where, 
𝑑𝐸(𝑡)𝐸𝑆𝑆

𝑑𝑡
 = change of SOC with  respect to time t, 

ɳcharging= charging efficiency, ɳdischarging= Discharging 
efficiency, P(t)charging= charging power at time t, 

P(t)discharging= Discharging power at time t, 𝜀(𝑡)= stochastic 

uncertainty in SOC dynamics. 

C. System model of EVs 

EVs have a crucial and indispensable role to play in the 

functioning of VPPs, as they provide immense value in 

terms of grid flexibility and demand-side management. By 

incorporating EVs into the power grid, a multitude of 

benefits become accessible, including the ability to 

dynamically balance the load, mitigate peak energy 

demand, and enhance storage capacity. Moreover, the 
integration of EVs represents a significant step towards the 

integration of renewable energy sources, as they 

contribute to the seamless assimilation of these sources 

into the grid. In doing so, they not only bolster grid 

stability but also pave the way for optimal cost 

management, thereby fostering the development of 

sustainable energy systems that are capable of effectively 

reducing carbon emissions. Equation (4) is used to 

calculate the charging power of EVs with power 

fluctuation δ(t)charging and stochastic uncertainty ε(t)charging. 

Equation (5) is used to calculate the discharging power of 
EVs with power fluctuation δ(t)discharging and stochastic 

uncertainty ε(t)discharging while equation (6) is used to show 

the dynamic nature of SOC of the batteries of EVs. The 

equations from (4) – (6) accurately represent the dynamic 

behavior of EVs in a VPP, are crucial for analyzing the 

interactions between EVs and the grid [4] – [7]. They 

consider uncertainties, power fluctuations, and operational 

constraints, enabling the effective integration of EVs into 

grid operations for optimized renewable energy utilization 

and minimized disruptions. These equations also provide 

insights into the impact of EV charging and discharging 
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patterns on grid performance, making them valuable for 

policymakers, grid operators, and researchers in 

developing strategies for enhanced EV integration and 

utilization within grid operations, advancing sustainable 

energy and smart grid technologies [1]. 

 

𝑃(𝑡)𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔
𝐸𝑉 = [𝑃𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

𝑚𝑎𝑥 , (𝑃(𝑡)𝑑𝑒𝑚𝑎𝑛𝑑 −

𝑃(𝑡)𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑)]  + 𝜀(𝑡)𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 + 𝛿(𝑡)𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔         (4) 

𝑃(𝑡)𝑑𝑖𝑠𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔
𝐸𝑉 = [𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔

𝑚𝑎𝑥 , (𝑃(𝑡)𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 −

𝑃(𝑡)𝑑𝑒𝑚𝑎𝑛𝑑)] + 𝜀(𝑡)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 +

𝛿(𝑡)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔            

(5) 

𝐸(𝑡 + 𝑑𝑡)𝐸𝑉 = 𝐸(𝑡)𝐸𝑉 + (ɳ𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 × 𝑃(𝑡)𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 −

1

ɳ𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
× 𝑃(𝑡)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 ) × 𝑑𝑡              (6) 

 

where, 𝑃(𝑡)𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔
𝐸𝑉  = charging power of EVs at time t, 

𝑃(𝑡)𝑑𝑖𝑠𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔
𝐸𝑉  = Discharging power if EVs at time t, 

𝐸(𝑡)𝐸𝑉= state of charge of EVs at time t, 𝐸(𝑡 + 𝑑𝑡)𝐸𝑉= 

Dynamic state of charging of EVs , ɳ𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔= charging 

efficiency of EVs, ɳ𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔= Discharging efficiency of 

EVs, 𝜀(𝑡)𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔= stochastic uncertainty of charging at 

time t, 𝛿(𝑡)𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔= power fluctuation of charging of 

EVs at time t, 𝜀(𝑡)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔= Discharging uncertainty at 

time , 𝛿(𝑡)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔= power fluctuation of discharging 

of EVs at time t. 

D. Model of HVAC 

 

HVAC systems play a crucial role in VPPs as they are 
essential for maintaining optimal indoor comfort levels 

while simultaneously optimizing energy consumption in 

an efficient manner. These systems are intelligently 

integrated with smart controls, thereby providing demand 

response capabilities that greatly contribute to grid 

stability and effective peak load management. The 

integration of HVACs within VPPs not only enhances the 

overall efficiency of the power plant but also results in 

significant reductions in energy costs and environmental 

impact. Furthermore, the utilization of these systems 

ensures that the comfort and wellbeing of building 
occupants are consistently prioritized and upheld, thereby 

creating a harmonious balance between energy 

optimization and occupant satisfaction. This particular 

model takes into consideration the presence of stochastic 

uncertainties in the power consumption of HVAC 

systems, thereby enabling more precise predictions and 

enhanced management of energy resources within the 

VPP. By doing so, it facilitates the implementation of 

optimized control strategies that aim to maintain optimal 

indoor comfort levels while simultaneously minimizing 

energy costs and the overall impact on the grid. Equation 

(7) is employed to compute the power consumption of the 

HVAC system, while equation (8) is utilized to determine 

the dynamic nature of the indoor temperature within said 

system. Furthermore, equation (9) serves as the threshold 

or limit for power consumption, establishing a benchmark 

that ensures efficient usage of energy [1],[8] – [9]. 

 

𝑃(𝑡)𝐻𝑉𝐴𝐶 = 𝛼 × (𝑇𝑠𝑒𝑡 − 𝑇(𝑡)𝑖𝑛𝑑𝑜𝑜𝑟) + 𝜀(𝑡)𝐻𝑉𝐴𝐶          (7) 

𝑇(𝑡 + 𝑑𝑡)𝑖𝑛𝑑𝑜𝑜𝑟 = 𝑇(𝑡)𝑖𝑛𝑑𝑜𝑜𝑟 + 𝛽(𝑇(𝑡)𝑜𝑢𝑡𝑑𝑜𝑜𝑟 −
𝑇(𝑡)𝑖𝑛𝑑𝑜𝑜𝑟) × 𝑑𝑡                                    (8) 

0 ≤ 𝑃(𝑡)𝐻𝑉𝐴𝐶 ≤ 𝑃𝑚𝑎𝑥                           (9) 

 

where, 𝑃(𝑡)𝐻𝑉𝐴𝐶= Power consumption by HVAC in time 

t, 𝛼= coefficient representing efficiency and capacity of 

HVAC, 𝜀(𝑡)𝐻𝑉𝐴𝐶= Stochastic uncertainty varying with 

time t, 𝑇(𝑡)𝑖𝑛𝑑𝑜𝑜𝑟= Indoor temperature, 𝑇(𝑡)𝑜𝑢𝑡𝑑𝑜𝑜𝑟= 

Outdoor temperature, 𝛽= coefficient representing thermal 

characteristics, 𝑇(𝑡 + 𝑑𝑡)𝑖𝑛𝑑𝑜𝑜𝑟= Dynamic nature of 

indoor temperature. 

E. Integration of VPP into IEEE 14 bus system 

The incorporation of a VPP that consists of PV systems, 

ESS, EVs, and HVAC units into a 14-bus electrical grid 

system that caters to both commercial and residential loads 
is of immense significance. This integration brings about 

a multitude of benefits by effectively managing and 

harnessing various energy resources, thereby enhancing 

the flexibility, stability, and efficiency of the grid. By 

effectively utilizing renewable energy sources, storage 

capabilities, and demand-side management, the VPP 

optimizes energy consumption, reduces dependency on 

fossil fuels, and effectively addresses grid congestion 

issues. This seamless integration paves the way for the 

establishment of a more sustainable and resilient energy 

infrastructure, which in turn supports the transition 

towards a grid ecosystem that is both cleaner and more 
intelligent [10] – [11]. After integrating VPP into 

electrical grid system, the total power at the bus to which 

VPP is connected, can be calculated by using equation 

(10) [1]. 

 

𝑃𝐵𝑢𝑠
𝑉𝑃𝑃 =  𝑃𝑃𝑉 + ∆𝑃𝐸𝑆𝑆 + ∆𝑃𝐸𝑉𝑠 + 𝑃𝐻𝑉𝐴𝐶                       (10) 

 

where, ∆𝑃𝐸𝑆𝑆 = 𝑃𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 − 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 , and ∆𝑃𝐸𝑉𝑠 =

𝑃𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 − 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔. The assessment of the Impact 

Analysis involves the examination and evaluation of the 

alterations in power distribution at individual electrical 

substations before and after the integration of the VPP. 

This evaluation is denoted as  ∆𝑃𝐵𝑢𝑠
𝑉𝑃𝑃. Equation (11) is 

used to show the impact analysis of the integration of VPP 

into electrical grid system [1]. 

 

∆𝑃𝐵𝑢𝑠
𝑉𝑃𝑃 = 𝑃𝑏𝑢𝑠

𝑤𝑖𝑡ℎ 𝑉𝑃𝑃 − 𝑃𝑏𝑢𝑠
𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑉𝑃𝑃                        (11) 
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Quantifying these changes is essential for comprehending 

the impact of VPP on electrical grid dynamics and 

optimizing grid operations in changing energy landscapes.  

III. Evaluation of Virtual power plant 

The evaluation of VPP comprised of the evaluation if 

multi-objective function optimization adaptive control 

strategies, different constraints used by VPP, evaluation 

metrics and novelty of the research study.  

A. Multi-objectives function 

In order to apply adaptive control strategies on virtual 

power plant when integrated it into electrical grid system, 

multi-objective function would be used to minimize the 

total cost, maximize the power utilization, reducing 
maximum demand, and enhancing grid stability and 

reliability [1], [12] – [13]. The multi-objective function J 

can be defined as illustrated by equation (12). 

 

𝐽 = 𝑤1 × 𝐶 + 𝑤2 × 𝑈𝑝 − 𝑤3 × 𝐷𝑚𝑎𝑥 − 𝑤4 × 𝑆𝑔𝑟𝑖𝑑 −

𝑤5 × 𝑅𝑔𝑟𝑖𝑑                                               (12) 

 

where, J is the objective function, w1, w2, w3, w4, and w5 

are the weighting factors and used to show the importance 

of each objective,  C is the total cost of VPP operation and 
it is actually the sum of generation cost CG(t) including 

fixed generation Cfix(t) and variable generation Cvar(t) cost 

at a particular period of time t as given by equation (13), 

total energy storage cost CES(t) including operational cost 

Cop(t) and degradation cost Cdeg(t) at particular duration of 

time t as given by equation (14), Total energy distribution 

cost Cdist(t) including total cost of transmission losses 

Closs(t) at a particular period of time as given by equation 

(15) and the cost associated with managing uncertainties 

Cuncert(t) in generation Cres(t) and forecasting Cforcast(t) as 

given by equation (16) [1]. 
 

𝐶𝑔𝑒𝑛(𝑡) = ∑ ( 𝐶𝑓𝑖𝑥
𝑖 (𝑡) + 𝐶𝑣𝑎𝑟

𝑖 (𝑡))
𝑁𝑔𝑒𝑛

𝑖=1
                         (13) 

𝐶𝐸𝑆(𝑡) = ∑ ( 𝐶𝑜𝑝
𝑗 (𝑡) + 𝐶𝑑𝑒𝑔

𝑗𝑁𝐸𝑆
𝑗=1

(𝑡))                            (14) 

𝐶𝑑𝑖𝑠𝑡(𝑡) = ∑ ( 𝐶𝑙𝑜𝑠𝑠
𝑘 (𝑡)) 

𝑁𝑑𝑖𝑠𝑡
𝑘=1                                        (15) 

𝐶𝑢𝑛𝑐𝑒𝑟𝑡(𝑡) = ∑ ( 𝐶𝑟𝑒𝑠
𝑙 (𝑡) + 𝐶𝑓𝑜𝑟𝑐𝑎𝑠𝑡

𝑙 (𝑡))           
𝑁𝑢𝑛𝑐𝑒𝑟𝑡
𝑙=1 (16) 

 

By combining equation (13), (14), (15) and (16), we can 

get total cost of VPP operation as shown by equation (17). 

Where Ngen is the total number of generation units, NES is 

the total number of storage units, Ndist is the total number 

of distribution units, and Nuncert is the total number of units 
associated with uncertainty cost.  

 

𝐶 = ∑
𝑁𝑔𝑒𝑛

𝑖=1
∑𝑁𝐸𝑆

𝑗=1
∑𝑁𝑑𝑖𝑠𝑡

𝑘=1
∑𝑁𝑢𝑛𝑐𝑒𝑟𝑡

𝑙=1 (𝐶𝑔𝑒𝑛
𝑖 (𝑡) +

𝐶𝐸𝑆
𝑗 (𝑡) + 𝐶𝑑𝑖𝑠𝑡

𝑘 (𝑡) + 𝐶𝑢𝑛𝑐𝑒𝑟𝑡
𝑙 (𝑡))                     (17) 

 

UP in equation (12) is used to show total power utilization. 

Up is a measure of how effectively the VPP is able to 

generate and distribute power to meet demand. Equation 

(18) for Up in a VPP considers the total power generated 

Pgen(t), stored PES(t), distribute Pdist(t), and potentially lost 

due to inefficiencies Ploss(t). 

 

𝑈𝑝(𝑡) =
𝑃𝑑𝑒𝑚𝑎𝑛𝑑(𝑡)

𝑃𝑔𝑒𝑛(𝑡)+𝑃𝐸𝑆(𝑡)+𝑃𝑑𝑖𝑠𝑡(𝑡)+𝑃𝑙𝑜𝑠𝑠(𝑡)
                      (18) 

 

Dmax is used to show maximum demand of electrical grid 

system and can be given by equation (19) while Dmax,VPP is 

used to show maximum demand after incorporating VPP 
as given by equation (20). Where Pload(t) is the power of 

load connected to electrical grid system. 

 

𝐷𝑚𝑎𝑥 = 𝑃𝑙𝑜𝑎𝑑(𝑡)                                  (19) 

𝐷𝑚𝑎𝑥,𝑉𝑃𝑃 = (𝑃𝑙𝑜𝑎𝑑(𝑡) − ( 𝑃𝑔𝑒𝑛(𝑡) + 𝑃𝐸𝑆(𝑡) + 𝑃𝑑𝑖𝑠𝑡(𝑡) +

𝑃𝑙𝑜𝑠𝑠(𝑡))                         (20) 

 

Sgrid is the stability of electrical grid system  is dependent 

upon power balance Pbalance(t) as given by equation (21), 
frequency deviation Δf(t) as given by equation (22) and  

voltage stability  which is influenced by reactive power 

balance Qbalance(t) as shown by equation (23), whereas, the 

stability of grid system is given by equation (24).Where, 

H is the inertia constant of grid system. 

 

𝑃𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝑡) = 𝑃𝑔𝑟𝑖𝑑(𝑡) + 𝑃𝑉𝑃𝑃(𝑡) − (𝑃𝑙𝑜𝑎𝑑(𝑡) +

𝑃𝑙𝑜𝑠𝑠(𝑡))                      (21) 

           ∆𝑓(𝑡) =
1

2𝐻
∫

𝑡

0
𝑃𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝑡)𝑑𝑡                             

(22) 

𝑄𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝑡) = 𝑄𝑔𝑟𝑖𝑑 (𝑡) + 𝑄𝑉𝑃𝑃(𝑡) − (𝑄𝑙𝑜𝑎𝑑(𝑡))       (23) 

𝑆𝑔𝑟𝑖𝑑 = {𝑃𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝑡) ≈

0 ;              𝑓𝑜𝑟 100% 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∆𝑓(𝑡) ≈
0;    𝑓𝑜𝑟 𝑧𝑒𝑟𝑜 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑄𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝑡) ≅

0;        𝑓𝑜𝑟 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦                           (24) 
 

Rgrid is the reliability of electrical grid system as indicated 

by equation (25). 

 

𝑅𝑔𝑟𝑖𝑑 =
∫ (𝑃𝑔𝑒𝑛(𝑡)+𝑃𝐸𝑆(𝑡)+𝑃𝑑𝑖𝑠𝑡(𝑡)+𝑃𝑙𝑜𝑠𝑠(𝑡))

𝑇
𝑜 𝑑𝑡 

∫ 𝑃𝑙𝑜𝑎𝑑(𝑡)
𝑇

0 𝑑𝑡 
                (25) 

 

In multi-objectives function, J2 is given by equation (26). 

Where Pbus is the power of bus to which aggregator is 

connected and X is the load connected to bus.  

 

𝐽2 = −|𝑃𝑏𝑢𝑠 − (4 × 𝑃𝑎𝑔𝑔 + ∑ 𝑋)|                    (26)  

 

J3 is given by equation (27), which is based on maximum 

energy trading position.   
 

𝐽3 = −𝑚𝑎𝑥 (𝑋𝑖)                                     (27) 
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J4 is another objective of multi-objectives function which 

shows the function controlling the grid stability and grid 

reliability and it can be given by equation (28). 

 

𝐽4 = −(𝑆𝑔𝑟𝑖𝑑 , 𝑅𝑔𝑟𝑖𝑑)                                  (28) 

B. Different constraints used by VPP 

Different constraints used in evaluation of virtual power 

plant integrating into electrical grid system for optimal 

scheduling and bidding strategies are given below.  

 

1) Total power generation constraint 

The total power generation constraint of VPP integrating 

into electrical grid system can be illustrated with help of 

equation (29). Where, P(t) is the power generated by ith 

VPP at time t, and Pmax is the maximum possible generated 

power. 

 
∑ 𝑃(𝑡)𝑖 ≤ 𝑃𝑚𝑎𝑥

𝑁
𝑖=1    ∀𝑡                                         (29) 

 
2) Individual component constraints 

The individual component constraints are charging and 

discharging constraint of energy storage system as shown 

by equation (30) and (31), charging and discharging 

constraints of electrical vehicles as illustrated by equation 

(32) and (33) and the constraint of power utilization of 

HVAC is given by equation (34).  

 

𝐸𝑆𝑆 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ∶    𝑃(𝑡)𝐸𝑆𝑆𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
≤

                                               𝑃𝑚𝑎𝑥 (𝐸𝑆𝑆)𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
                  (30)  

𝐸𝑆𝑆 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑟𝑎𝑡𝑒: 𝑃(𝑡)𝐸𝑆𝑆𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
≤

                                               𝑃𝑚𝑎𝑥 (𝐸𝑆𝑆)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
            (31) 

𝐸𝑉 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ∶  𝑃(𝑡)𝐸𝑉𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
≤

                                              𝑃𝑚𝑎𝑥 (𝐸𝑉)𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
                   (32) 

𝐸𝑉 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑟𝑎𝑡𝑒: 𝑃(𝑡)𝐸𝑉𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
≤

                                              𝑃𝑚𝑎𝑥 (𝐸𝑉)𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
             (33) 

𝑃𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝐻𝑉𝐴𝐶:    𝑃(𝑡)𝐻𝑉𝐴𝐶 ≤ 𝑃𝐻𝑉𝐴𝐶 𝑚𝑎𝑥
      (34) 

 

3) Optimal scheduling strategy 

In optimal scheduling strategies parameters, S(t) is used 

to show the optimal scheduling parameters for each 

particle at iteration time t and s1
(t) is the parameter for 

charging rate of ESS, s2
(t) is the parameter for discharging 

rate of ESS, s3
(t) is the parameter for storage level of ESS, 

s4
(t) is the parameter for demand level of EVs, s5

(t) is the 

parameter for demand level of HVAC and s6
(t) is the 

amount of surplus power if available. Equation (35) is 

used to show the optimal scheduling strategy of VPP in 

the framework of the solution bi-level stochastic 

optimization problem using adaptive control strategy. 

 

𝑆(𝑡) = {𝑠1
𝑡 , 𝑠2

𝑡 , 𝑠3
𝑡 , 𝑠4

𝑡 , 𝑠5
𝑡 , 𝑠6

𝑡}                    (35) 

 

4) Bidding strategy 

In optimal scheduling strategies parameters, B(t) is used 

to show the bidding strategy parameters for each particle 

at iteration time t and b1
(t) is the parameter for bid prices, 

b2
(t) is the parameter for quantities of bid strategies, and 

b3
(t) is the parameter for bid threshold. Equation (36) is 

used to show the bidding strategy of VPP in the framework 

of the solution bi-level stochastic optimization problem 

using adaptive control strategy. 
 

𝐵(𝑡) = {𝑏1
𝑡 , 𝑏2

𝑡 , 𝑏3
𝑡 }                            (36)  

  

5) Energy trading position  

Energy trading position is basically the position of the 
particle of adaptive control strategy, which represent the 

energy trading decisions, and used to specify that how 

much energy has to buy or sell at time iteration t at 

different scenarios i=1,2,3,…..N. Equation (37) is used to 

show position of particle xi
(t) the energy trading position 

for different scenarios of bidding. Where, xN
t is the energy 

trading position of a particle at N number of scenario. 

 

𝑋𝑖
(𝑡)

= {𝑥1
𝑡 , 𝑥2

𝑡 , 𝑥3
𝑡 , … . . , 𝑥𝑁

𝑡 }                        (37) 

C. Structure algorithm of Multi-objectives function 

optimization 

Structured algorithms offer a methodical way to address 
intricate problems with multi-objective functions by 

dividing tasks into distinct, step-by-step processes. They 

improve the clarity, effectiveness, and manageability of 

code, assisting in comprehending and applying different 

adaptive techniques. Through arranging the flow of logic 

and data, structured algorithms support the adaptive 

procedure, allowing for the simultaneous reduction or 

increase of various goals in a harmonized approach. Table 

I shows structure algorithm of multi-objective function of 

VPP. 
 

TABLE I 

STRUCTURE ALGORITHM OF MULTI-OBJECTIVE FUNCTION OF VPP 

Structure algorithm of multi-objective function of VPP 

Start: 

1. Initialization of input parameters: NParticle, Niteration, Nvariable, 

Cpanel_per_watt, Wpanel, Cess_per_Wh, CEV_per_Wh 

2. Define multi-objective function: 

J1=w1 x C+w2 x Up –w3 x Dmax – w4 x Sgrid – w5 xRgrid 

J2= - |Pbus – (4 x Pagg + Σx)| 

J3= - max (x1) 

        J4= - (Sgrid, Rgrid) 

3. Define constraints function: fconstraints(x)=Σx -Pbus 

4.  initialization: Pposition=Rand(Nparticles, Nvariables);  

Pvelocity=zeros(Nparticles, Nvariables); 

5.  main loop: 

For iter=1:Niteration 

       Evaluate Ji for each particles 

       Update particle velocity and position 

       Clamps positions within the bounds 
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End  

6. Evaluate grid stability and reliability 

[Sgrid, Rgrid]=simulate_grid(x,busdata, linedata); 

Optimized solution and metrics 

7. Display Ji the multi-objective functions 

End  

IV. Results and Discussions 

This section deals with the analysis of a VPP involves a 

detailed examination of various components such as PV 

systems, ESS systems, EVs, and HVACs, focusing on 

their unique characteristics and functions within the VPP 

framework for efficient grid operation. In Fig. 1, a line 
graph shows the solar plant's power output in winter under 

various shading and weather uncertainty scenarios. Blue 

represents 10% shading with 0% uncertainty, red shows 

10% shading with 10% uncertainty, black represents 50% 

shading with 10% uncertainty, green shows 50% shading 

with 50% uncertainty, yellow represents 80% shading 

with 50% uncertainty, and cyan illustrates 80% shading 

with 80% uncertainty. The graph demonstrates that as 

shading and uncertainty increase, maximum output power 

decreases, highlighting the significant impact of these 

factors on solar power generation. 

 

 
Fig. 1: Output power with shading effect and weather uncertainty 

generated during winter 

Fig. 2 shows how a solar plant's output power during 

summer is affected by shading and weather uncertainty. 

Under ideal conditions (10% shading, 0% uncertainty), the 

maximum power reaches 1.5 MW (blue line). As shading 

and uncertainty increase, output power drops 

significantly, with 80% shading and 80% uncertainty 

reducing it to 0.1 MW (cyan line). This highlights the 

strong influence of these factors on summer solar 
performance. Despite abundant sunlight, shading and 

weather variability still affect efficiency, underscoring the 

importance of site selection, panel alignment, and 

advanced forecasting for optimal performance. 

 
Fig. 2: Output power with shading effect and weather uncertainty 

generated during summer   

 

Fig. 3 and 5 illustrate the hourly charging power 

fluctuations of the Energy Storage System (ESS) in 
summer due to stochastic uncertainty and adaptive control 

strategies. In Fig. 3, the red line shows steady charging 

around 1MW during peak solar irradiance, while the blue 

line highlights variability, with instances of zero power 

input caused by uncertainties like grid connections and 

market dynamics. Fig. 4 and 5 depict similar patterns in 

winter. Adaptive control in Fig. 5 manages uncertainties, 

aligning with the stable red line in Fig. 3 and 4, 

showcasing the strategy's effectiveness in optimizing 

energy use and ensuring reliable ESS performance under 

changing conditions. 

 

 
Fig. 3: Charging power of ESS with and without stochastic uncertainty 

during summer 
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Fig. 4: Charging power of ESS with and without uncertainty during 

winter 

 
Fig. 5: Charging power of ESS with adaptive control strategy during 

summer and winter 

Fig. 6, 7, and 8 compare the impact of stochastic 

uncertainty and adaptive control strategies on the dynamic 

State of Charge (SOC) of the Energy Storage System 

(ESS) under summer conditions. In Fig. 6, the red line 
shows a predictable SOC, charging to 95% during peak 

solar hours and discharging to 38% by the 24th hour, while 

the blue line shows fluctuations from 2% to 16% due to 

uncertainties like grid variability. Fig. 7 follows a similar 

trend, reaching 65%, while Fig. 8, with adaptive control, 

stabilizes SOC, peaking at 92%. Adaptive control 

minimizes uncertainties, improving SOC management 

and system efficiency. 

 
Fig. 6: Dynamic state of charge of ESS with and without stochastic 

uncertainty during summer 

 
Fig. 7: Dynamic state of charge of ESS with and without stochastic 

uncertainty during winter 

 
Fig. 8: Dynamic state of charge of ESS with application of adaptive 

control strategy during summer and winter 

Fig. 9 illustrates the charging demand of EVs under 

stochastic influences like battery degradation and energy 

market prices during summer and winter. Initially, the 

demand is low at 0.1MW but rises to 0.9MW–1MW 

between hours 13 and 17, likely due to peak EV usage or 

energy price fluctuations. Fig. 10 shows the effect of 

applying an adaptive control strategy (PID) in both 

seasons. Charging power peaks between hours 11 and 14 
in winter and 13 and 17 in summer, maintaining levels 

around 0.6MW–0.7MW, demonstrating the strategy's 

effectiveness in optimizing energy use and managing 

dynamic demand. 

 
Fig. 9: Charging demand of EVs with stochastic uncertainty during 

summer and winter 

summer and winter 
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Fig. 10: Charging demand of EVs with adaptive control strategy during 

summer and winter 

Fig. 11 highlight the dynamic SOC in EV batteries 

influenced by stochastic uncertainty. In winter, SOC 

stabilizes at around 10% before discharging, while in 
summer, it peaks at a slightly higher level. Fig. 12 

demonstrate the effectiveness of adaptive control, 

particularly the PID controller, in maintaining consistent 

SOC levels. By dynamically adjusting charging rates, the 

adaptive strategy optimizes SOC, enhancing battery 

efficiency and lifespan. In both seasons, SOC approaches 

100% during charging and transitions smoothly to 

discharging, showcasing the reliability of adaptive control 

in managing EV battery performance under varying 

conditions. 

 
Fig. 11: Dynamic state of charge of the batteries of EVs with 

consideration of Stochastic uncertainty during summer and winter 

 
Fig. 12: Dynamic state of charge of Batteries of EVs with application of 

adaptive control strategy during summer and winter 

Fig. 13 illustrates the indoor temperature fluctuations over 

a 24-hour period, starting at 46°C and stabilizing at 32°C. 
The most notable change occurs between the tenth and 

fifteenth hour, where the temperature drops rapidly by 

10°C. This decrease likely result from the activation of 

cooling systems demonstrating the effectiveness of 

temperature regulation in enhancing indoor comfort. The 

rapid cooling phase highlights the importance of efficient 

cooling strategies to maintain a comfortable living 

environment. 

 
Fig. 13: Dynamic nature of indoor temperature with passage of time 

A. Case Analyses 

In this case study, we use adaptive control strategy to 

optimize a VPP integration into the grid, aiming to reduce 

operational costs and improve power utilization. By 

lowering peak demand, we enhance overall efficiency, 

stability, and reliability, advancing a robust energy 
infrastructure to meet modern demands. 
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Case 1: Cost minimization of the operation of VPP 

A thorough method was used to optimize cost 

operations of a VPP within the electrical grid system, 

which involved employing advanced analytics, VPP to 

efficiently manage resources and reduce operational costs. 

The comparison of actual and optimized VPP costs using 

adaptive algorithm over 20 iterations reveals that the 
optimized cost initially exceeds the actual cost, 

showcasing VPPs efficiency. Between iterations 2 and 4, 

the costs converge, indicating a potential plateau. At 

iteration 4, both costs reach zero, reflecting an effective 

setup. Later, negative costs may arise from penalties or 

numerical precision issues. The optimized cost’s drop to -

1 x 107 PKR by iteration 15, matched by the actual cost at 

iteration 16, suggests algorithmic tendencies or local 

minimum convergence, as shown in Fig. 14. This analysis 

highlights VPP’s impact on cost efficiency and the 

importance of monitoring cost patterns for improving VPP 

operations. 

  
Fig. 14: operation cost minimization of electrical grid system 

incorporating VPP 

 

Case 2: maximizing power utilization of VPP 

Enhancing a cutting-edge VPP involves optimizing 

stored, utilized, and distributed power by integrating 

sustainable energy sources. Fig. 15 illustrates VPP's 

impact on the electrical grid system, highlighting a 

significant decrease in stored power from 37MW to 5MW, 

indicating better energy utilization. While consumed 

power rises slightly to 10MW, total delivered power 

surges to 74MW, demonstrating VPP's effectiveness in 

resource allocation and power delivery. This increase 

underscores VPP's transformative role in improving the 

efficiency and sustainability of the electrical grid system. 

 
Fig. 15: Maximization of the utilization of power using VPP 

 

Case 3: Grid stability and reliability 

Fig. 16 compares grid stability and reliability under two 

scenarios: "Grid stability simple" and "Grid stability 

Vpp." The x-axis represents the scenarios, while the y-axis 

shows the percentage levels of grid stability and 

reliability. In the simple scenario, grid stability is 

relatively high at 80%, but in the Vpp scenario, it increases 

significantly to 95%, indicating a notable improvement. 
For grid reliability, the simple scenario stands at 20%, 

with a modest increase to 25% in the Vpp scenario. While 

the Vpp approach greatly enhances grid stability, its 

impact on reliability is less pronounced. This suggests that 

the Vpp method is particularly effective for boosting grid 

resilience and robustness, reducing blackouts, improving 

system efficiency, enhancing power quality, and making 

the grid more resilient to external disturbances like 

extreme weather and cyber-attacks. 
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Fig. 16: Grid stability and reliability integrating VPP 

 

Case 4: Optimal scheduling of VPP in electricity 

market 

The comparison of the upper and lower subplots in Fig. 
17 reveals insights into the impact of bi-level stochastic 

optimization on VPP scheduling within the electricity 

market. The upper subplot, representing scheduling 

without bi-level stochastic optimization, shows limited 

optimal behavior, indicating challenges in capturing 

uncertainties like demand fluctuations and price volatility. 

In contrast, the lower subplot, utilizing bi-level stochastic 

optimization, demonstrates improved scheduling 

effectiveness by addressing market uncertainties through 

probabilistic forecasting. 

 

Fig. 17: Optimal scheduling of VPP in electricity market with and 

without bi-level stochastic optimization 

Case 5: Bidding strategy of VPP in electricity market 

The comparison between the upper and lower subplots 

of Fig. 18 illustrates a clear disparity in the revenue results 

of the bidding strategy employed by the Virtual Power 

Plant in the electricity market, with and without the 

utilization of bi-level stochastic optimization. In the upper 
subplot, where bi-level stochastic optimization is not 

utilized, most scenarios generate revenue below 1 x 104 

USD. This suggests that the deterministic bidding strategy 

may face challenges in effectively adapting to and 

exploiting the dynamic market conditions and 

uncertainties, leading to suboptimal revenue generation. 

On the other hand, in the lower subplot, which 

incorporates bi-level stochastic optimization, the revenue 

outcomes for the majority of scenarios exceed 1 x 105 

USD. This notable enhancement highlights the 

transformative effect of bi-level stochastic optimization in 

improving the VPP's bidding strategy. Through the 

integration of probabilistic forecasting, risk management, 

and advanced optimization techniques, bi-level stochastic 

optimization empowers the VPP to dynamically adjust its 

bidding decisions in accordance with evolving market 
dynamics and uncertainties. This adaptive approach not 

only maximizes revenue potential but also reinforces the 

VPP's resilience and competitiveness within the electricity 

market landscape. 

 

Fig. 18: Bidding strategy of VPP in electricity market with and without 

bi-level stochastic optimization 

Bi-level stochastic optimization benefits from its ability 

to consider uncertainties in market parameters and system 

constraints, optimizing strategic decisions at the upper 

level and utilizing probabilistic forecasts at the lower 
level. The approach enables VPPs to balance risk and 

reward effectively, leading to adaptive scheduling 

solutions resilient to market uncertainties. Additionally, 

the bi-level stochastic optimization framework further 

enhances performance by efficiently exploring complex 

optimization problems, making it suitable for addressing 

the challenges faced by VPPs in the electricity market. 

Ultimately, the comparison highlights the crucial role of 

bi-level stochastic optimization in enhancing VPP 

scheduling performance by maximizing revenue, 

minimizing risk, and improving overall efficiency in 

dynamic market environments. 
The frequency distribution of power sold by the Virtual 

Power Plant to the electricity market, as shown in Fig. 18, 

provides important insights into the distribution patterns 

and market behavior of the VPP's power sales. The 
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distribution reveals various trends and anomalies in the 

frequency of power sales across different power output 

ranges. Initially, the distribution shows a fairly even 

pattern, with consistent frequencies of power sold between 

0 and 2.5 MW, indicating steady market demand within 

this range. However, changes in the distribution become 

apparent as the power output exceeds 2.5 MW. 
Specifically, there is an increase in the frequency of power 

sales between 2.5 and 3 MW, followed by a decrease 

between 3 and 4 MW, suggesting potential market 

dynamics or operational limitations affecting power sales 

in these ranges. Moreover, the irregular fluctuations in 

frequency between 4 and 10 MW suggest shifts in market 

demand or VPP operational strategies. For instance, the 

decrease in the frequency of power sales between 6 and 

7.5 MW, a sudden spike at 8 MW, and subsequent 

fluctuations may indicate market responses to pricing or 

supply dynamics, with the VPP adjusting its sales tactics 
accordingly. The peaks and valleys observed in the 

frequency distribution highlight the difficulties of 

optimizing power sales in response to evolving market 

conditions, varying demand, and operational factors. 

Ultimately, the frequency distribution provides valuable 

insights for enhancing the VPP's sales strategies, resource 

allocation, and market positioning to improve revenue 

generation and operational efficiency while effectively 

meeting market demand. 

 

Fig. 19: Frequency distribution of power sold by VPP 

V. Conclusion 

In conclusion, the detailed analysis highlights the 

pivotal role of VPPs in modernizing and enhancing grid 

operations by integrating renewable energy sources such 

as PV systems, along with ESS, EVs, and HVAC systems. 

The study underscores the significant impact of factors 

like shading and weather uncertainties on solar power 

generation, emphasizing the need for advanced site 

selection, panel alignment, and forecasting methods to 

mitigate these effects. The analysis of ESS performance 
demonstrates that adaptive control strategies, particularly 

stochastic uncertainty management, are crucial for 

maintaining stable charging and SOC levels, improving 

both energy efficiency and system reliability. Similarly, 

EV charging demand responds dynamically to market 

influences and battery conditions, with adaptive control 

strategies further optimizing performance across different 

conditions. The case studies involving adaptive control 
strategy show the method's effectiveness in minimizing 

operational costs and maximizing power utilization, 

demonstrating how VPPs can enhance grid stability, 

reliability, and efficiency. Additionally, the application of 

bi-level stochastic optimization in VPP scheduling and 

bidding strategies proves to be a powerful approach, 

addressing uncertainties in the electricity market, 

improving decision-making processes, and maximizing 

revenue potential. By balancing risk and reward through 

probabilistic forecasting, this optimization framework 

enables VPPs to adapt to dynamic market conditions, 
enhancing both operational efficiency and economic 

resilience. Overall, this comprehensive analysis illustrates 

the transformative potential of VPPs in building a more 

sustainable, efficient, and reliable energy infrastructure 

capable of meeting the challenges of modern grid systems. 
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