

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License, permitting copy

and redistribution of the material and adaptation for commercial and uncommercial use.

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 8, No. 1, April 2025

 Comparison of Q-learning and Sarsa Algorithm for Automated

Guided Vehicle Path Planning

J. O. Jeffrey Oon1, S. N. L. K. Nor Azmi1, N.I. Anwar Apandi1*, N. Z. Abd Rahman2, N. A.

Muhammad3

1Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal,

Melaka, Malaysia
2Faculty of Engineering & Technology, Multimedia University, 74540 Melaka, Malaysia

3Faculty of Electrical Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia

Corresponding author’s email: ilyana@utem.edu.my

Abstract – An Automated Guided Vehicle (AGV) system is a type of material handling equipment

that navigates through a facility using a combination of sensors and computer control. However,
traditional path planning methods for AGVs often face challenges in determining efficient routes

while ensuring obstacle avoidance and minimizing computational overhead. These limitations

hinder the continuity and stabilization of production processes, particularly in complex and dynamic

environment. This work explores path planning for AGVs based on reinforcement learning,

specifically the Sarsa algorithm, where the AGV functions as an agent, influencing the continuity

and stabilization of the production process. The problem is framed as a Markov Decision Process

(MDP), allowing the AGV to model its environment and make sequential decisions to optimize its

path. As the agent undergoes training, the emphasis gradually shifts towards exploitation rather

than exploration. Problems involving obstacle avoidance strategies for static environments are also

addressed, considering various learning rates, discount factors, and steps. Simulation results

demonstrate that the AGV can avoid obstacles in a grid-mapped environment and reach its

destination. Therefore, the Sarsa algorithm converges faster and requires fewer steps compared to
Q-learning implementation.

Keywords: Automated Guided Vehicle (AGV), Discount Factor, Learning Rates, Markov Decision

Process (MDP), Q-Learning, Sarsa Algorithm.

Article History
Received 2 September 2024
Received in revised form 2 December 2024
Accepted 8 January 2025

I. Introduction

Automated Guided Vehicle (AGV) play an

important role in the industrial environment, especially

in intralogistics and material handling processes [1]. As

smart manufacturing environments become widespread,

the introduction of the Factory of the Future (FoF) system

employs the Internet of Things (IoT) and multi-access or

mobile edge computing systems to control and manage

AGV fleets. In the past decades, there have been research
works on localization, scheduling, and path-planning

regarding AGV. Path planning refers to the ability of AGV

to search for the optimal path from the start point to the

target point with minimum time, in the meantime, AGV

considers the robotic constraints (obstacle avoidance) and

inter-robotic constraints (collision avoidance). Path

planning for the AGVs is one of the core challenges in the

field of autonomous manufacturing [2],[3] . For example,

the material handling process in the shop floor production

line is related to the continuity and stabilization of the

production process. Research directions have focused on
localization, scheduling, and path planning for AGVs [4],

while further exploring the optimization of AGV path

planning by considering robotic and inter-robotic

constraints such as obstacle avoidance and collision

avoidance [5]-[8],

Recently, reinforcement learning (RL) has served as a

solution to material handling challenges, particularly in

navigating obstacles and averting collisions to ensure

smooth distribution processes [9] - [12]. Machine learning

is a process where a device program increases its

performance by learning from experience. Machine

learning algorithms are divided into three categories
basically, which are supervised learning, unsupervised

learning and RL. Supervised learning refers to training a

device is trained using labeled data in the performance

classification or regression based on inductive inference.

Unsupervised learning trains a device using unlabeled data

International Journal of Electrical Engineering and Applied Sciences

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 8, No. 1, April 2025

by density estimation or clustering. RL trains a device by

agents and the interaction with the environment. Actions

taken at every state affect the reward received, and the

successive state, and future rewards [13]. The

performance of AGVs can be evaluated based on factors

such as learning rate (α), discount factor (γ), and steps

[14]. RL emerges as a powerful tool to empower AGVs to
make autonomous decisions based on their experiences

[2], [15]-[17].

By training AGVs through interaction with the

environment, RL enables actions to impact received

rewards and future states. Actions taken in one state lead

to transitions to the next state with associated

probabilities, and rewards guide subsequent actions [13].

Markov Decision Process (MDP) is a conventional

framework widely recognized for its efficiency in

decision-making problems based on RL. MDP is defined

by a set of < 𝑆, 𝐴, 𝑇, 𝑅 > which stands for “state”,

“action”, “transition” and, “reward” function, which

describe the function the agent’s interactions with the

environment. It allows the agent to evaluate different

actions in each state and determine an optimal policy to

maximize cumulative rewards over time. This structured

approach is particularly useful for AGV path planning,

where the goal is to find the best route while accounting

for obstacles and maximizing operational efficiency.

Understanding the relationships among these components

is crucial for informed decision-making. Update targets
are established based on received and expected future

rewards, employing a one-step look-ahead method by

achieving a balance of exploration and exploitation is

important for effective decision-making. Exploration

allows the agent to discover new states and rewards, while

exploitation is applying known information to maximize

immediate rewards. Striking this balance ensures that the

agent does not get stuck in suboptimal actions and

continuously improves its policy.

Q-learning is one of the remarkable classical RL

algorithms. Q-Learning was introduced by Watkins in the
year of 1989 [18]. Q-Learning is an off-policy algorithm,

which means target and behavior policies use different

policies. Target policy follows greedy policy in action

selection while behavior policy follows ε -greedy policy

to select the actual action [19]. For instance, in aircraft

component assembly lines, where diverse AGV types

manage 13 stations, Q-Learning can aid in navigating

AGV states, including collisions, and facilitating conflict

resolution and task completion[14], [20]-[22].

However, Q-learning may face challenges in multi-

agent environments due to its large memory requirements,

leading to complex problems. State–Action–Reward–
State–Action, commonly referred to as Sarsa (λ)

algorithm, represents an improved version of Q-Learning,

employing the same policy for both target and behavior

and utilizing an ε-greedy strategy for action selection [18].

Moreover, research has shown that Q-Learning performs

sub-optimally compared to the Sarsa algorithm in solving

scheduling problems [20], [23]. The Sarsa algorithm

addresses mobile robot path planning, demonstrating

efficacy in resolving challenges such as obstacle

avoidance and path planning in complex environments

through two- and three-dimensional simulations [24].

The contributions of this paper are as follows. First, this
paper addresses the path planning challenges for AGVs in

the context of material handling in a shop floor area,

specifically in an indoor environment. Unlike [17], this

study includes investigating the path planning for AGV by

utilizing the RL and principles of the Sarsa algorithm. On

top of that, this study also presents a comprehensive

framework that utilizes MDP to model AGV path planning

task.

By implementing both Q-learning and the Sarsa

algorithm, the study demonstrates improved path planning

efficiency, reducing collision rates and optimizing routes
in real-time. The analysis of key performance metrics,

such as learning rate (𝛼), discount factor (γ), and steps

provides valuable insights into the effectiveness of RL in

AGV applications. Moreover, the research addresses the

computational challenges associated with RL, proposing

strategies to achieve faster learning speeds and shorter

convergence times, thereby making RL more practical for

industrial applications.

II. System Model

In this section, the system model for AGV path

planning using Q-learning is presented which defines the

framework within which the AGVs operate, outlining the

key model in RL-based decision-making, < 𝑆, 𝐴, 𝑇, 𝑅 >.

In this model, each state and action pair correspond to

a Q-value, in which the sum of the existing Q-value is

updated with the new Q-value for the action for the current

state, 𝑆 to determine the optimal action in the current state.

Q-learning continuously updates the Q-values for each

state until stabilized, meaning no further changes occur, or

until a predefined stopping criterion is met. For every

action taken by the agent, the Q-value is updated only

once. In environments with a large state-action space,

significant storage is required to accommodate the

extensive Q-table and its associated rewards.

Table I shows the table of Q-value, where the rows is

state, 𝑠 and the columns represent action, 𝑎. Each state and

action pair corresponds to a Q-value. Action selection by
an agent is determined by Q-value, Q (s, a), which is

updated as the sum of the received reward, r, and expected

future value γ max Q(s’,a’).

TABLE I

Q-VALUE TABLE

State Action a1 a n+1

s1 q(s1,a1) q(s1,an+1)

s n+1 q(s n+1,a1) q(sn+1,an+1)

Integration of Q-learning and Sarsa Algorithm for Automated Guided Vehicle (AGV) Path Planning

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 8, No. 1, April 2025

The agent can move in four directions: north, south,

east, and west, which constitute action space. This

movement corresponds to the ability of AGV to transition

between the adjacent cells. Fig. 1 illustrates the agent's in

circle indicates the detectable directions within the Grid

World environment.

Fig. 1. Detectable direction of the agent in Grid World Environment

The agent has four possible actions, and each

exploration updates the corresponding Q-value in the Q-

table. Given the state-action pair design, with two 4×4

states, thus, the total number of Q-values to be learned is

two 4×4×4. Therefore, there are 256 state-action pairs of

Q values to be learned. The obtained Q value matrix is
shown in (1).

𝑄64×4 = [
𝑄𝑠0𝑎0 𝑄𝑠0𝑎+1

𝑄𝑠+1𝑎0 𝑄𝑠+1𝑎+1
] (1)

𝑟 = {
+10, 𝑖𝑓 𝑠𝑡𝑎𝑡𝑒 = [4,4]

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

Every movement of the agent results in encountering

different states, the agent obtains the reward based on the

state. regardless of the action taken, according to prior

knowledge. The agent receives a reward, 𝑟 =+10 when it

reach the terminal state and penalty 𝑟 = −1 for every

other action, as shown in equation (2).

A. Policy

This section provides the highlights of the policy

employed in this study, focusing on implementing ɛ-

greedy strategy. This strategy is a method used to balance

exploration and exploitation in RL. It ensures that the

agent explores the environment sufficiently while also

exploiting the knowledge it has gained to maximize

rewards.
Initially, when the agent has limited knowledge about

the problem environment, it tends to explore more.

However, as the agent undergoes training, the emphasis

gradually shifts towards exploitation rather than

exploration. Developing effective exploration strategies

for RL agents remains an active area of research.

To improve the decision-making process, the ɛ-greedy

strategy is implemented as shown in equation (3), the

agent chooses an action randomly with a probability of

0 < ɛ < 1 , allowing for exploration of new actions.

{
𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠′ , 𝑎), 1 − ɛ

𝑈𝑛𝑖𝑓𝑜𝑟𝑚, ɛ
 (3)

Conversely, with a probability of 1- ɛ, the agent selects

the action with the highest Q-value for the current state,

thereby exploiting its existing knowledge to achieve the

best possible outcome. The rules used by the 𝜀-greedy

policy ensure that the action with the maximum Q-value
in a specific state is selected with a probability of 1- ɛ,

while one of all possible actions in the state is chosen

randomly with a probability of ɛ.

A stochastic policy, 𝜋 is a mapping from states to

probabilities, where 𝜋(𝑎|𝑠) represents the probability of

acting 𝑎 in state 𝑠. This means that for any given state, the

policy provides a probability distribution over possible

action. The aim of RL is to find the optimal policy, 𝜋 ∗,
which maximizes the expected sum of discounted rewards

over time. The optimal policy is determined by evaluating

different policies and selecting the one that yields the

highest cumulative reward. The equation for the optimal

policy is given by (4).

𝜋 = {
𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎),

𝜋,
 𝔼𝜋{∑ 𝛾𝑘𝑟𝑘+1 | 𝑠0 = 𝑠𝐻−1

𝑘=0 } (4)

For states in the set 𝑆, where 𝑠 ∈ 𝑆, 𝑟𝑘 = 𝑅(𝑠𝑘, 𝑎𝑘)

represents the reward at time 𝑘. The value function 𝑉𝜋(𝑠)

at state 𝑠, following policy 𝜋, denotes the expected reward

when starting at state 𝑠 and adhering to the policy 𝜋

thereafter. Table II shows the key components of the

optimal policy equation in RL.

TABLE II

KEY COMPONENTS OF THE OPTIMAL POLICY EQUATION IN RL

Components Descriptions

𝑎𝑟𝑔𝑚𝑎𝑥𝜋
The operation of finding the policy

that yields the highest expected value

𝔼𝜋
The expected value under policy, π

considering all possible outcomes

{∑ 𝛾𝑘𝑟𝑘+1 | 𝑠0 = 𝑠

𝐻−1

𝑘=0

}
The total of discounted rewards over a

time horizon, H

𝑘 Time step index, from 0 to H-1

𝛾𝑘
Discount factor raised to the power of

𝑘

𝑟𝑘+1 The reward at time step 𝑘 + 1

(𝑠0 = 𝑠)

Expectation is taken over all

trajectories starting the initial state

𝑠0 = 𝑠

B. Discount Factor

The discount factor 𝛾 ∈ [0,1] represents future reward

controlled by a learning agent, aiming to maximize

cumulative rewards over time since state and action in

classical RL are discrete data where the action-value

function is tabulated [18].

International Journal of Electrical Engineering and Applied Sciences

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 8, No. 1, April 2025

A low discount factor initiates myopic behavior,

emphasizing the maximization of short-term rewards that

must be achieved by the agents. Conversely, a high

discount factor initiates rewards maximization of longer

frame rewards, making agents become more forward

looking. Action value function (Q-function) is defined as

in equation (5).

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋 (∑ 𝛾𝑘𝑟𝑘+1 | 𝑠0 = 𝑠

𝐻−1

𝑘=0

, 𝑎0 = 𝑎) (5)

The Bellman optimality equation for the action-value

function is introduced in equation (6). The Bellman

equation provides a recursive decomposition of the value

function, which will illustrate better on how decision-

making improves over time.

𝑞∗(𝑠, 𝑎) = 𝔼 [𝑅𝑡+1 +𝛾max
𝑎′

𝑞∗(𝑆𝑡+1, 𝑎′)|𝑆𝑡 = 𝑠|𝐴𝑡=𝑎] (6)

In this study, the implementation of Bellman equation,

one can update the value of Q-values iteratively, ensuring

that the learning agent converges with the optimal policy

that maximizes the cumulative rewards.

III. Design the Algorithms

This section demonstrates the design of the algorithms

used in this study for path planning of AGV using the RL

application. The objective of this study is to determine the

most efficient route for AGVs while avoiding obstacles

and optimizing their performance within a material
handling environment. To solve this, reinforcement

learning methods specifically Q-learning and Sarsa are

implemented and compared to evaluate their effectiveness

in AGV navigation performance.

A. Problem Definition

The main problem addressed in this study is the

development of an intelligent path planning strategy for

AGVs operating in an indoor manufacturing environment.

The AGV must learn to navigate from a designated start

point to a target location while optimizing travel time and

avoiding collisions with obstacles.

As mentioned earlier, the RL framework is defined in
terms of its essential variables and parameters, which

serve as the foundation for the agent's learning process.

These include the environment state, possible actions,

learning rate, discount factor, exploration-exploitation

strategy, and reward function. The outputs of this learning

process are the Q-values for each state-action pair and the

optimal policy derived from them. Table III shows the

input and output variables used in the design and

implementation of the algorithms.

TABLE III

VARIABLES AND PARAMETERS OF ALGORITHMS

Type of

Variables
System Parameters Notation

Input Environment State 𝑠

Input Action 𝑎

Input Learning Rate 𝛼

Input Discount Factor 𝛾

Input Exploration-Exploitation Policy 𝜖

Input Reward Function 𝑟

Output Q-Value 𝑄

Output Optimal Policy 𝜋

B. Q-Learning Algorithm

The equation of Q-learning, as described in (7), is

applied to the Q-values in Table I. This table shows how

each state 𝑠 and action 𝑎 pair corresponds to a specific Q-

value (𝑄(𝑠, 𝑎)). For instance, in state 𝑠𝑗 , the agent

evaluates the potential Q-values for actions 𝑎𝑖 and 𝑎𝑖−1 to

determine the most favorable course of action. The update

process involves recalculating 𝑄(𝑠, 𝑎) using the

immediate reward (𝑟) and the discounted maximum

expected future value 𝛾 max 𝑄(𝑠′, 𝑎′)
𝑎

. Equation (7) is

used to update the Q-value in Table I through the learning

process, as the agent optimizes its decision-making policy

based on the cumulative reward received over time.

𝑄′(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max
𝑎′∈𝐴

𝑄(𝑠′𝑎′) − 𝑄(𝑠, 𝑎)] (7)

Algorithm 1 : Q-Learning Algorithm

Input : 𝑠, 𝑎, 𝛾, 𝛼

Initialize 𝑄(𝑠, 𝑎):

∀𝑠, ∀𝑎, 𝜋(𝑎|𝑠) =
1

|𝐴|
;

repeat

Initialization state 𝑆

repeat

Using (3), select action 𝑎 under state 𝑠;

Obtain reward 𝑟 and the nest state 𝑠′;
Using (7), update 𝑄(𝑠, 𝑎);

𝑠 ← 𝑠′;
until 𝑠 is terminated;

until ∀𝑠, ∀𝑎, 𝑄(𝑎|𝑠) optimize;

Output : policy 𝜋(𝑠) = 𝑄(𝑠, 𝑎)𝜋∈𝐴
𝑎𝑟𝑔𝑚𝑎𝑥

Initially, the rewards are present in the Q-table. An
agent chooses an action through a policy in the starting

state and moves to the next state. This process is repeated

until the overall Q-value converges to a specific value

where the Q-table is used to solve a given problem.

C. Sarsa Algorithm

Integration of Q-learning and Sarsa Algorithm for Automated Guided Vehicle (AGV) Path Planning

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 8, No. 1, April 2025

Sarsa is also based on the Q-table. The difference

between Q-Learning and Sarsa is the value of the actual

future action 𝑎𝑡+1 used instead of the maximum future

value as shown in (7). At each step of each episode, the

next action to take is determined rather than dynamically

determining the step at the beginning of the next step. The
target policy and behavior policy of SARSA follow ɛ-

greedy policies which depend on Q-value. Sarsa

eventually converges on the near-optimal policy and the

actual optimal policy cannot be obtained. Sarsa algorithm

is as equation (8).

𝑄′(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) − 𝑄(𝑠𝑡 , 𝑎𝑡)
+ 𝛼[𝑅𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1)]

(8)

Algorithm 2 : Sarsa Algorithm

Input : 𝑠, 𝑎, 𝛾, 𝛼

Initialize 𝑄(𝑠, 𝑎):

∀𝑠, ∀𝑎, 𝜋(𝑎|𝑠) =
1

|𝐴|
;

repeat

Initialization state 𝑆

repeat

Using (3), select action 𝑎 under state 𝑠;

Obtain reward 𝑟 and the nest state 𝑠′;
Using (8), update 𝑄(𝑠, 𝑎);

𝑠 ← 𝑠′; 𝑎 ← 𝑎′
until 𝑠 is terminated;

until ∀𝑠, ∀𝑎, 𝑄(𝑎|𝑠) optimize;

Output : policy 𝜋(𝑠) = 𝑄(𝑠, 𝑎)𝜋∈𝐴
𝑎𝑟𝑔𝑚𝑎𝑥

D. Implementation of the AGV Path Planning

In this study, the AGV utilizes Sarsa algorithm which

can dynamically interact with its external environment

exploring paths through trial and error, and selecting the

optimal route based on the accumulated learning

experiences and an action selection strategy. During the

process of continuous interaction with the environment,

the AGV calculates the state-action value function 𝑄(𝑠, 𝑎)

and stores it in the Q-table. As the AGV continues to

explore and learn, 𝑄(𝑠, 𝑎) gradually converges to stable

values. Once the Q-table converges, the AGV selects the

action with the highest Q-value at each state to determine

and execute the optimal path [17].

IV. Results and Discussion

The simulation has been conducted in MATLAB. The

outcomes are systematically tabulated and presented in

graphical form to illustrate the agent’s performance under

the designated value of parameters. This section discusses

the findings from the simulations, comparing the

performance of the Q-learning and Sarsa algorithm in

terms of learning rate and discount factor, denoted by α

and γ, respectively, and step against episode.

A. Performance of learning rate (α)

In the analysis of α performance for both Q-learning and

Sarsa, the constant parameters are tabulated as in Table IV

with discount factor, γ = 0.9. The value range of

α=[0.1,0.9] being analyzed were categorized into three

categories which are lower α=[0.1,0.9], and higher

α=[0.7,0.9]. Fig. 2 and Fig. 3 shows the performance of
average rewards with lower and higher α respectively.

TABLE IV

CONSTANT PARAMETERS TO ANALYSIS PERFORMANCE

Notation System Parameters Values

𝑀
Number of maximum states per

episode
500

𝑁𝑖 Number of iterations 100

ε Epsilon 0.9

Fig. 2 shows the impact of different learning rates on

average rewards in two reinforcement learning (RL)

algorithms. For lower learning values, 𝛼=0.1, there are

significant changes in average reward, with early rewards
gradually increasing until reaching optimal levels.

Increasing α to 0.3 leads to higher average rewards for

both algorithms. Both algorithms at the lower learning

rates converge around the 40th episode and converge

faster compared to higher rates. Q-Learning shows smaller

deviations in average rewards than Sarsa, implying that Q-

Learning may offer more consistent and reliable

performance in achieving optimal rewards under the given

parameters. However, Sarsa consistently displayed

smaller reward deviations than Q-Learning, suggesting

Sarsa's potential for more stable performance across
various learning rates and its advantage in achieving

optimal rewards. Q-Learning displays a wider range of

average rewards and converges more slowly compared to

Sarsa, which typically exhibits a narrower range of

rewards and converges faster.

In Fig. 3, the values of α are set to be α=[0.7,0.9] for

higher learning rates. When α=0.7, the rewards increase at

first and then decrease. Then, α=0.8 decreases

inconsistently at first and then increases, and α=0.9

gradually decreases and reaches the lower limit of the

average reward. Q-Learning with α=0.7 converges at the

44th episode, while the other values of α continue to
fluctuate over the episodes without reaching a stable state.

In the case of Sarsa, performance with α=0.7 remains

considerably stable compared to the other two values of α.

The latter exhibited dramatic oscillations around the near-

optimal value without achieving a stable state. Based on

the observations of both algorithms, higher α leads to

instabilities and hinders convergence to an optimal policy.

Large learning rate values can result in erratic

performance, making it challenging to achieve stable and

reliable learning outcomes. Striking a balance between

exploration and exploitation is crucial to ensure
convergence and stability in RL algorithms.

International Journal of Electrical Engineering and Applied Sciences

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 8, No. 1, April 2025

Fig. 2. Performance of average reward with lower α for (a) Q-

Learning; (b) Sarsa

Fig. 3. Performance of average reward with higher α for (a) Q-

Learning; (b) Sarsa

B. Performance of discount factor (γ)

In the performance analysis of the discount factor of Q-

learning and Sarsa, constant parameters have been used

for both. The parameters include the number of maximum

states per episode, the number of episodes, ε and α= [7,

19]. The parameter values are tabulated in Table IV with
α=0.7. The value range of γ=[0.1,0.9] being analyzed was

categorized into three categories which are lower γ

=[0.1,0.3] and higher γ =[0.7,0.9].

Fig. 4 shows the cumulative reward for each episode

with various γ. Based on the analysis of learning factor, α,

the best α value that produces the highest generation value

of average rewards for Q-Learning is 0.5 while that for

Sarsa is 0.6. For comparison purposes, 0.5 of α was taken

in the performance analysis of the discount factor. This

value is used for the performance analysis of γ as the fixed

parameter setting.
The study assessed the influence of the discount factor, γ

on the Q-Learning and Sarsa algorithms by analyzing its

performance in lower and higher ranges, based on the

results presented in Fig. 5. Within the range γ = [0.1, 0.3],

Q-Learning achieved a cumulative reward of 3.33 %,

which was higher than Sarsa's 0.33 %. Although both

algorithms produced negative cumulative rewards in each

of the 100 episodes, Q-Learning performed better,

demonstrating a larger positive reward percentage and a

more focused distribution of rewards within a smaller

range.

Fig. 4. Performance of discount factor with various γ for (a) Q-

Learning; (b) Sarsa

Transitioning to γ = [0.4, 0.6], Sarsa was the best with

a significantly larger positive cumulative reward than Q-

Learning. In this range, Sarsa outperformed Q-Learning

by exhibiting a more converging range of average

rewards. As γ values increased to γ = [0.7, 0.9], Q-

Learning maintained its dominance, reaching a solid

positive cumulative reward of 78% compared to Sarsa's
significantly larger positive cumulative reward over the

episodes. Both algorithms achieved their highest positive

cumulative rewards at γ = 0.9, indicating a preference for

long-term benefits over immediate gains at higher γ

values.

Fig. 5. Performance of discount factor with higher γ for (a) Q-Learning;

(b) Sarsa

Fig. 5 shows that Q-Learning outperformed Sarsa for

cumulative reward at discount factor levels γ =[0.7,0.9].

Q-Learning received a positive cumulative reward of

78%, whereas Sarsa received an even higher positive

Integration of Q-learning and Sarsa Algorithm for Automated Guided Vehicle (AGV) Path Planning

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 8, No. 1, April 2025

cumulative reward of 82.66%. Notably, Q-Learning had a

higher percentage by 86% of cumulative rewards falling

between -20 and 100, compared to Sarsa's by 84% within

the broader range of -60 to 50.

This demonstrates ability Q-Learning's capacity to

accumulate rewards across several episodes,

outperforming Sarsa's performance. The higher
cumulative reward gained by Q-Learning demonstrates its

capacity to successfully learn and utilise rewards within

the limitations imposed. Q-Learning converged earlier

than Sarsa, around the, respectively, 6th and 9th episodes,

but had higher fluctuations. Thus, analysing discount

factor performance demonstrates its remarkable influence

on cumulative rewards and convergence speed in Q-

Learning and Sarsa algorithms, with consequences for

learning efficiency and reward outcomes.

C. Performance of episode steps

The performance analysis of Q-learning and Sarsa
algorithms, conducted under constant parameters

including γ=0.9, selected based on the highest cumulative

rewards observed. Fig. 6.(a) shows the performance in

terms of episode steps, indicating notable differences in

their exploration and convergence behaviors Q-Learning

has a greater maximum route length of 337, indicating a

more extensive exploration process and possibly slower

convergence to optimum policy, whereas Sarsa has a

shorter maximum path length of 210, implying faster

convergence. Moreover, Q-Learning's longer total

execution time implies greater computational demands or

slower convergence relative to Sarsa. This could be
attributed to Q-Learning's broader exploration, resulting in

a more comprehensive search for optimal policy and

longer convergence time, while Sarsa's focused

exploration enables relatively quicker convergence.

 Fig. 6.(b) shows the performance of total agent steps,

with Q-Learning demonstrating phased increases and

Sarsa displaying a more gradual rise with an early spike.

The higher overall steps required by Q-Learning indicate

its exploration of a larger action-state space or prolonged

convergence, highlighting the trade-off between

exploration and exploitation.
Q-Learning's phased increase suggests a balance

between intensive exploration and subsequent

exploitation, potentially leading to the discovery of

optimal policy, whereas Sarsa's more gradual exploration

may prioritize efficiency but risks missing optimal

solutions. Sarsa focuses on the agent's performance during

the learning process by considering the exploration-

exploitation trade-off and incorporating an epsilon-greedy

policy and it can learn to avoid dangerous actions more

quickly than Q-learning. It updates its Q-values based on

the current state-action pair and the immediate reward,
considering the next action chosen according to the policy

being followed.

Fig. 6. Performance of (a) episode steps (b) total agent steps.

Sarsa is recommended for situations where the agent's

performance during the learning process matters, and the

agent's actions can directly impact the learning process

itself, where the agent prefers a safer path and minimizes

the risks during the learning phase.

V. Conclusion

In this paper, the AGV path planning was addressed

utilizing the RL, Q-learning and Sarsa. AGV performance

was analyzed by comparison between Q-learning and

Sarsa is analyzed based on learning rate (α), discount

factor (γ), and step against episode. The results

demonstrated that the optimal rate (𝛼) for Q-Learning and

Sarsa is 0.5 and 0.6 respectively, while both algorithms

perform better high discount factors (𝛾 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 1). The

convergence time of Sarsa was greater than that of Q-

learning, indicating that Q-learning fewer steps to

stabilize.

The dissimilar update rules of Q-learning and Sarsa

render them suitable for different scenarios. Q-learning

focuses on identifying the optimal policy by updating Q-

values based on the maximum expected future reward,

making it suitable for environments where exploration is

important. It can be effectively used in a practice phase

where the agent explores using an epsilon-greedy policy

(𝜀), followed by an optimal greedy policy during an

important deployment. On the other hand, Sarsa’s on

policy approach makes it beneficial in scenarios requiring

more stable learning during the training phase. For future

work, visualization of AGV performance can be further

developed to apply in AGV system for solving material

handling problem, contributing to the future of Industry

4.0 in the Asian region.

International Journal of Electrical Engineering and Applied Sciences

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 8, No. 1, April 2025

Acknowledgements

The authors wish to acknowledge the Ministry of
Higher Education (MOHE) of Malaysia and Universiti

Teknikal Malaysia Melaka (UTeM), for supporting this

research financially through the Fundamental Research

Grant Scheme, No.: FRGS/1/2022/TK07/UTEM/02/33.

Conflict of Interest

The authors declare no conflict of interest in the

publication process of the research article.

Author Contributions

Author 1: Data collection, analysis, writing – original draft

preparation; Author 2: Draft review and editing; Author 3:

Conceptualization, review system model; Funding

acquisition; Author 4: project administration; Author 5:

review analysis.

 References

[1] E. A. Oyekanlu et al., “A review of recent advances in

automated guided vehicle technologies: Integration challenges

and research areas for 5G-based smart manufacturing

applications,” 2020, Institute of Electrical and Electronics

Engineers Inc. doi: 10.1109/ACCESS.2020.3035729.
[2] E. Turki and H. Al-Rawi, “Multi-Robot Path-Planning

Problem for a Heavy Traffic Control Application: A Survey,”

International Journal of Advanced Computer Science and

Applications, vol. 7, no. 6, 2016, doi:

10.14569/ijacsa.2016.070623.

[3] “TV2 Galeri Mandarin - DF Automation & Robotics Sdn Bhd

- YouTube.” Accessed: Jan. 26, 2024. [Online Video].

Available: https://www.youtube.com/watch?v=NrUliUkX

[4] R. H. Mohammed, M. E. Aboelmorsy, and B. E. Elnaghi, “Path

tracking control of differential drive mobile robot based on

chaotic-billiards optimization algorithm,” Int. J. Electr.

Comput. Eng, vol. 13, pp. 1449–1462, 2023.

[5] E. T. S. Alotaibi and H. Al-Rawi, “A complete multi-robot

path-planning algorithm,” Auton Agent Multi Agent Syst, vol.

32, pp. 693–740, 2018.

[6] M. Javaid, A. Haleem, S. Rab, R. P. Singh, R. Suman, and S.

Mohan, “Progressive schema of 5G for Industry 4.0: features,

enablers, and services,” Industrial Robot: the international

journal of robotics research and application, vol. 49, no. 3, pp.

527–543, Jan. 2022, doi: 10.1108/IR-10-2021-0226.

[7] W. S. WAN, N. I. A. Apandi, and N. A. Muhammad, “Task

Scheduling Based on Genetic Algorithm for Robotic System

in Manufacturing Industry,” International Journal of

Electrical Engineering and Applied Sciences (IJEEAS), vol. 5,

no. 1, 2022.

[8] Z. Ma and D. Wang, “A CNN Based Q-learning Algorithm for

Path Planning of Automated Guided Vehicle,” in 2021 IEEE

International Conference on Electrical Engineering and

Mechatronics Technology (ICEEMT), IEEE, Jul. 2021, pp.

704–708. doi: 10.1109/ICEEMT52412.2021.9601907.

[9] J. Hua, L. Zeng, G. Li, and Z. Ju, “Learning for a robot: Deep

reinforcement learning, imitation learning, transfer learning,”

Sensors, vol. 21, no. 4, p. 1278, 2021.

[10] N. P. Farazi, B. Zou, T. Ahamed, and L. Barua, “Deep

reinforcement learning in transportation research: A review,”

Transp Res Interdiscip Perspect, vol. 11, p. 100425, 2021.

[11] B. Li and Y. Wu, “Path planning for UAV ground target

tracking via deep reinforcement learning,” IEEE access, vol.

8, pp. 29064–29074, 2020.

[12] B. R. Kiran et al., “Deep reinforcement learning for

autonomous driving: A survey,” IEEE Transactions on

Intelligent Transportation Systems, vol. 23, no. 6, pp. 4909–

4926, 2021.

[13] B.R. Kiran et al., “Deep Reinforcement Learning for

Autonomous Driving: A Survey,” IEEE Transactions on

Intelligent Transportation Systems, vol. 23, no. 6, pp. 4909–

4926, Jun. 2022.

[14] F. Martinez, H. Montiel, and L. Wanumen, “A deep

reinforcement learning strategy for autonomous robot

flocking,” International Journal of Electrical and Computer

Engineering (IJECE), vol. 13, no. 5, p. 5707, Oct. 2023, doi:

10.11591/ijece.v13i5.pp5707-5716.

[15] G. Tang, C. Tang, C. Claramunt, X. Hu, and P. Zhou,

“Geometric A-Star Algorithm: An Improved A-Star Algorithm

for AGV Path Planning in a Port Environment,” IEEE Access,

vol. 9, pp. 59196–59210, 2021, doi:

10.1109/ACCESS.2021.3070054.

[16] Y. Yang, L. Juntao, and P. Lingling, “Multi‐robot path

planning based on a deep reinforcement learning DQN

algorithm,” CAAI Trans Intell Technol, vol. 5, no. 3, pp. 177–

183, Sep. 2020, doi: 10.1049/trit.2020.0024.

[17] X. Liao, Y. Wang, Y. Xuan, and D. Wu, “AGV Path Planning

Model based on Reinforcement Learning,” in 2020 Chinese

Automation Congress (CAC), IEEE, Nov. 2020, pp. 6722–

6726. doi: 10.1109/CAC51589.2020.9326742.

[18] M. Rothmann and M. Porrmann, “A Survey of Domain-

Specific Architectures for Reinforcement Learning,” IEEE

Access, vol. 10, pp. 13753–13767, Jan. 2022, doi:

10.1109/ACCESS.2022.3146518.

[19] H. Jiang, R. Gui, Z. Chen, J. Dang, J. Zhou, and S. Member,

“An Improved Sarsa(λ) Reinforcement Learning Algorithm for

Wireless Communication Systems,” Special Section On

Artificial Intelligence For Physical-Layer Wireless

Communications, vol. 7, pp. 115418–115427, Jun. 2019, doi:

10.1109/ACCESS.2019.2935255.

[20] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-Learning

Algorithms: A Comprehensive Classification and

Applications,” IEEE Access, vol. 7, pp. 133653–133667, 2019,

doi: 10.1109/ACCESS.2019.2941229.

[21] H. Hu, X. Jia, K. Liu, and B. Sun, “Self-adaptive traffic control

model with Behavior Trees and Reinforcement Learning for

AGV in Industry 4.0,” IEEE Trans Industr Inform, 2021, doi:

10.1109/TII.2021.3059676.

[22] E. M. Raouhi, M. Lachgar, H. Hrimech, and A. Kartit,

“Optimizing olive disease classification through transfer

learning with unmanned aerial vehicle imagery,” International

Journal of Electrical and Computer Engineering (IJECE), vol.

14, no. 1, p. 891, Feb. 2024, doi: 10.11591/ijece.v14i1.pp891-

903.

[23] A. Momenikorbekandi and M. Abbod, “Intelligent Scheduling

Based on Reinforcement Learning Approaches: Applying

Advanced Q-Learning and State–Action–Reward–State–

Action Reinforcement Learning Models for the Optimisation

of Job Shop Scheduling Problems,” Electronics (Basel), vol.

12, no. 23, p. 4752, Nov. 2023, doi:

10.3390/electronics12234752.

[24] D. Xu, Y. Fang, Z. Zhang, and Y. Meng, “Path Planning

Method Combining Depth Learning and Sarsa Algorithm,” in

2017 10th International Symposium on Computational

Intelligence and Design (ISCID), IEEE, Dec. 2017, pp. 77–82.

doi: 10.1109/ISCID.2017.145.

