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Abstract – An Automated Guided Vehicle (AGV) system is a type of material handling equipment 

that navigates through a facility using a combination of sensors and computer control. However, 
traditional path planning methods for AGVs often face challenges in determining efficient routes 

while ensuring obstacle avoidance and minimizing computational overhead. These limitations 

hinder the continuity and stabilization of production processes, particularly in complex and dynamic 

environment. This work explores path planning for AGVs based on reinforcement learning, 

specifically the Sarsa algorithm, where the AGV functions as an agent, influencing the continuity 

and stabilization of the production process. The problem is framed as a Markov Decision Process 

(MDP), allowing the AGV to model its environment and make sequential decisions to optimize its 

path. As the agent undergoes training, the emphasis gradually shifts towards exploitation rather 

than exploration. Problems involving obstacle avoidance strategies for static environments are also 

addressed, considering various learning rates, discount factors, and steps. Simulation results 

demonstrate that the AGV can avoid obstacles in a grid-mapped environment and reach its 

destination. Therefore, the Sarsa algorithm converges faster and requires fewer steps compared to 
Q-learning implementation. 
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I. Introduction 

Automated Guided Vehicle (AGV) play an 

important role in the industrial environment, especially 

in intralogistics and material handling processes [1]. As 

smart manufacturing environments become widespread, 

the introduction of the Factory of the Future (FoF) system 

employs the Internet of Things (IoT) and multi-access or 

mobile edge computing systems to control and manage 

AGV fleets. In the past decades, there have been research 
works on localization, scheduling, and path-planning 

regarding AGV. Path planning refers to the ability of AGV 

to search for the optimal path from the start point to the 

target point with minimum time, in the meantime, AGV 

considers the robotic constraints (obstacle avoidance) and 

inter-robotic constraints (collision avoidance). Path 

planning for the AGVs is one of the core challenges in the 

field of autonomous manufacturing [2],[3] . For example, 

the material handling process in the shop floor production 

line is related to the continuity and stabilization of the 

production process. Research directions have focused on 
localization, scheduling, and path planning for AGVs [4], 

while further exploring the optimization of AGV path 

planning by considering robotic and inter-robotic 

constraints such as obstacle avoidance and collision 

avoidance [5]-[8], 

Recently, reinforcement learning (RL) has served as a 

solution to material handling challenges, particularly in 

navigating obstacles and averting collisions to ensure 

smooth distribution processes [9] - [12]. Machine learning 

is a process where a device program increases its 

performance by learning from experience. Machine 

learning algorithms are divided into three categories 
basically, which are supervised learning, unsupervised 

learning and RL. Supervised learning refers to training a 

device is trained using labeled data in the performance 

classification or regression based on inductive inference. 

Unsupervised learning trains a device using unlabeled data 
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by density estimation or clustering. RL trains a device by 

agents and the interaction with the environment. Actions 

taken at every state affect the reward received, and the 

successive state, and future rewards [13]. The 

performance of AGVs can be evaluated based on factors 

such as learning rate (α), discount factor (γ), and steps 

[14]. RL emerges as a powerful tool to empower AGVs to 
make autonomous decisions based on their experiences 

[2], [15]-[17]. 

 

By training AGVs through interaction with the 

environment, RL enables actions to impact received 

rewards and future states. Actions taken in one state lead 

to transitions to the next state with associated 

probabilities, and rewards guide subsequent actions [13]. 

Markov Decision Process (MDP) is a conventional 

framework widely recognized for its efficiency in 

decision-making problems based on RL. MDP is defined 

by a set of < 𝑆, 𝐴, 𝑇, 𝑅 > which stands for “state”, 

“action”, “transition” and, “reward” function, which 

describe the function the agent’s interactions with the 

environment. It allows the agent to evaluate different 

actions in each state and determine an optimal policy to 

maximize cumulative rewards over time. This structured 

approach is particularly useful for AGV path planning, 

where the goal is to find the best route while accounting 

for obstacles and maximizing operational efficiency. 

Understanding the relationships among these components 

is crucial for informed decision-making. Update targets 
are established based on received and expected future 

rewards, employing a one-step look-ahead method by 

achieving a balance of exploration and exploitation is 

important for effective decision-making. Exploration 

allows the agent to discover new states and rewards, while 

exploitation is applying known information to maximize 

immediate rewards. Striking this balance ensures that the 

agent does not get stuck in suboptimal actions and 

continuously improves its policy. 

Q-learning is one of the remarkable classical RL 

algorithms. Q-Learning was introduced by Watkins in the 
year of 1989 [18]. Q-Learning is an off-policy algorithm, 

which means target and behavior policies use different 

policies. Target policy follows greedy policy in action 

selection while behavior policy follows ε -greedy policy 

to select the actual action [19]. For instance, in aircraft 

component assembly lines, where diverse AGV types 

manage 13 stations, Q-Learning can aid in navigating 

AGV states, including collisions, and facilitating conflict 

resolution and task completion[14], [20]-[22]. 

However, Q-learning may face challenges in multi-

agent environments due to its large memory requirements, 

leading to complex problems. State–Action–Reward–
State–Action, commonly referred to as Sarsa (λ) 

algorithm, represents an improved version of Q-Learning, 

employing the same policy for both target and behavior 

and utilizing an ε-greedy strategy for action selection [18]. 

Moreover, research has shown that Q-Learning performs 

sub-optimally compared to the Sarsa algorithm in solving 

scheduling problems [20], [23]. The Sarsa algorithm 

addresses mobile robot path planning, demonstrating 

efficacy in resolving challenges such as obstacle 

avoidance and path planning in complex environments 

through two- and three-dimensional simulations [24]. 

The contributions of this paper are as follows. First, this 
paper addresses the path planning challenges for AGVs in 

the context of material handling in a shop floor area, 

specifically in an indoor environment. Unlike [17], this 

study includes investigating the path planning for AGV by 

utilizing the RL and principles of the Sarsa algorithm. On 

top of that, this study also presents a comprehensive 

framework that utilizes MDP to model AGV path planning 

task.  

By implementing both Q-learning and the Sarsa 

algorithm, the study demonstrates improved path planning 

efficiency, reducing collision rates and optimizing routes 
in real-time. The analysis of key performance metrics, 

such as learning rate (𝛼), discount factor (γ), and steps 

provides valuable insights into the effectiveness of RL in 

AGV applications. Moreover, the research addresses the 

computational challenges associated with RL, proposing 

strategies to achieve faster learning speeds and shorter 

convergence times, thereby making RL more practical for 

industrial applications. 

II. System Model 

In this section, the system model for AGV path 

planning using Q-learning is presented which defines the 

framework within which the AGVs operate, outlining the 

key model in RL-based decision-making, < 𝑆, 𝐴, 𝑇, 𝑅 >.  

In this model, each state and action pair correspond to 

a Q-value, in which the sum of the existing Q-value is 

updated with the new Q-value for the action for the current 

state, 𝑆 to determine the optimal action in the current state. 

Q-learning continuously updates the Q-values for each 

state until stabilized, meaning no further changes occur, or 

until a predefined stopping criterion is met. For every 

action taken by the agent, the Q-value is updated only 

once. In environments with a large state-action space, 

significant storage is required to accommodate the 

extensive Q-table and its associated rewards. 

Table I shows the table of Q-value, where the rows is 

state, 𝑠 and the columns represent action, 𝑎. Each state and 

action pair corresponds to a Q-value. Action selection by 
an agent is determined by Q-value, Q (s, a), which is 

updated as the sum of the received reward, r, and expected 

future value γ max Q(s’,a’). 

 
TABLE I 

Q-VALUE TABLE 

State Action a1 a n+1 

s1 q(s1,a1) q(s1,an+1) 

s n+1 q(s n+1,a1) q(sn+1,an+1) 
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The agent can move in four directions: north, south, 

east, and west, which constitute action space. This 

movement corresponds to the ability of AGV to transition 

between the adjacent cells. Fig. 1 illustrates the agent's in 

circle indicates the detectable directions within the Grid 

World environment.  

 
Fig. 1. Detectable direction of the agent in Grid World Environment 

 

The agent has four possible actions, and each 

exploration updates the corresponding Q-value in the Q-

table. Given the state-action pair design, with two 4×4 

states, thus, the total number of Q-values to be learned is 

two 4×4×4. Therefore, there are 256 state-action pairs of 

Q values to be learned. The obtained Q value matrix is 
shown in (1).  

𝑄64×4 = [
𝑄𝑠0𝑎0 𝑄𝑠0𝑎+1

𝑄𝑠+1𝑎0 𝑄𝑠+1𝑎+1
]           (1) 

 
 

𝑟 = {
+10, 𝑖𝑓 𝑠𝑡𝑎𝑡𝑒 = [4,4]

−1,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         (2) 

 

Every movement of the agent results in encountering 

different states, the agent obtains the reward based on the 

state. regardless of the action taken, according to prior 

knowledge. The agent receives a reward,  𝑟 =+10 when it 

reach the terminal state and penalty 𝑟 = −1 for every 

other action, as shown in equation (2). 

A. Policy 

This section provides the highlights of the policy 

employed in this study, focusing on implementing ɛ-

greedy strategy. This strategy is a method used to balance 

exploration and exploitation in RL. It ensures that the 

agent explores the environment sufficiently while also 

exploiting the knowledge it has gained to maximize 

rewards. 
Initially, when the agent has limited knowledge about 

the problem environment, it tends to explore more. 

However, as the agent undergoes training, the emphasis 

gradually shifts towards exploitation rather than 

exploration. Developing effective exploration strategies 

for RL agents remains an active area of research. 

To improve the decision-making process, the ɛ-greedy 

strategy is implemented as shown in equation (3), the 

agent chooses an action randomly with a probability of   

0 < ɛ < 1 , allowing for exploration of new actions.  

{
𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠′ , 𝑎),   1 −  ɛ

𝑈𝑛𝑖𝑓𝑜𝑟𝑚,      ɛ
              (3) 

 

Conversely, with a probability of 1- ɛ, the agent selects 

the action with the highest Q-value for the current state, 

thereby exploiting its existing knowledge to achieve the 

best possible outcome. The rules used by the 𝜀-greedy 

policy ensure that the action with the maximum Q-value 
in a specific state is selected with a probability of 1- ɛ, 

while one of all possible actions in the state is chosen 

randomly with a probability of ɛ. 

A stochastic policy, 𝜋 is a mapping from states to 

probabilities, where 𝜋(𝑎|𝑠) represents the probability of 

acting 𝑎 in state 𝑠. This means that for any given state, the 

policy provides a probability distribution over possible 

action. The aim of RL is to find the optimal policy, 𝜋 ∗, 
which maximizes the expected sum of discounted rewards 

over time. The optimal policy is determined by evaluating 

different policies and selecting the one that yields the 

highest cumulative reward. The equation for the optimal 

policy is given by (4). 

𝜋 = {
𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎),

𝜋,      
  𝔼𝜋{∑ 𝛾𝑘𝑟𝑘+1 | 𝑠0 = 𝑠𝐻−1

𝑘=0 }    (4) 

 

For states in the set 𝑆, where 𝑠 ∈ 𝑆, 𝑟𝑘 = 𝑅(𝑠𝑘, 𝑎𝑘) 

represents the reward at time 𝑘. The value function 𝑉𝜋(𝑠) 

at state 𝑠, following policy 𝜋, denotes the expected reward 

when starting at state 𝑠 and adhering to the policy 𝜋 

thereafter. Table II shows the key components of the 

optimal policy equation in RL. 

 
TABLE II 

KEY COMPONENTS OF THE OPTIMAL POLICY EQUATION IN RL 

Components Descriptions 

𝑎𝑟𝑔𝑚𝑎𝑥𝜋 
The operation of finding the policy 

that yields the highest expected value 

𝔼𝜋 
The expected value under policy, π 

considering all possible outcomes 

{∑ 𝛾𝑘𝑟𝑘+1 | 𝑠0 = 𝑠

𝐻−1

𝑘=0

} 
The total of discounted rewards over a 

time horizon, H 

𝑘 Time step index, from 0 to H-1 

𝛾𝑘 
Discount factor raised to the power of 

𝑘  

𝑟𝑘+1 The reward at time step 𝑘 + 1 

(𝑠0 = 𝑠) 

Expectation is taken over all 

trajectories starting the initial state  

𝑠0 = 𝑠  

B. Discount Factor 

The discount factor 𝛾 ∈ [0,1] represents future reward 

controlled by a learning agent, aiming to maximize 

cumulative rewards over time since state and action in 

classical RL are discrete data where the action-value 

function is tabulated [18]. 
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A low discount factor initiates myopic behavior, 

emphasizing the maximization of short-term rewards that 

must be achieved by the agents. Conversely, a high 

discount factor initiates rewards maximization of longer 

frame rewards, making agents become more forward 

looking. Action value function (Q-function) is defined as 

in equation (5).  
 

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋 (∑ 𝛾𝑘𝑟𝑘+1 | 𝑠0 = 𝑠

𝐻−1

𝑘=0

, 𝑎0 = 𝑎)             (5) 

 

The Bellman optimality equation for the action-value 

function is introduced in equation (6). The Bellman 

equation provides a recursive decomposition of the value 

function, which will illustrate better on how decision-

making improves over time.  

 

𝑞∗(𝑠, 𝑎) = 𝔼 [𝑅𝑡+1 +𝛾max
𝑎′

𝑞∗(𝑆𝑡+1, 𝑎′)|𝑆𝑡 = 𝑠|𝐴𝑡=𝑎]  (6) 

 

In this study, the implementation of Bellman equation, 

one can update the value of Q-values iteratively, ensuring 

that the learning agent converges with the optimal policy 

that maximizes the cumulative rewards.  

III. Design the Algorithms 

This section demonstrates the design of the algorithms 

used in this study for path planning of AGV using the RL 

application. The objective of this study is to determine the 

most efficient route for AGVs while avoiding obstacles 

and optimizing their performance within a material 
handling environment. To solve this, reinforcement 

learning methods specifically Q-learning and Sarsa are 

implemented and compared to evaluate their effectiveness 

in AGV navigation performance. 

A. Problem Definition 

The main problem addressed in this study is the 

development of an intelligent path planning strategy for 

AGVs operating in an indoor manufacturing environment. 

The AGV must learn to navigate from a designated start 

point to a target location while optimizing travel time and 

avoiding collisions with obstacles.  

As mentioned earlier, the RL framework is defined in 
terms of its essential variables and parameters, which 

serve as the foundation for the agent's learning process. 

These include the environment state, possible actions, 

learning rate, discount factor, exploration-exploitation 

strategy, and reward function. The outputs of this learning 

process are the Q-values for each state-action pair and the 

optimal policy derived from them. Table III shows the 

input and output variables used in the design and 

implementation of the algorithms.  

TABLE III 

VARIABLES AND PARAMETERS OF ALGORITHMS 

Type of 

Variables 
System Parameters Notation 

Input Environment State 𝑠 

Input Action 𝑎 

Input Learning Rate 𝛼 

Input Discount Factor 𝛾 

Input Exploration-Exploitation Policy  𝜖 

Input Reward Function 𝑟 

Output Q-Value  𝑄 

Output Optimal Policy 𝜋 

 

B. Q-Learning Algorithm 

The equation of Q-learning, as described in (7), is 

applied to the Q-values in Table I. This table shows how 

each state 𝑠 and action 𝑎 pair corresponds to a specific Q-

value (𝑄(𝑠, 𝑎)). For instance, in state 𝑠𝑗 , the agent 

evaluates the potential Q-values for actions 𝑎𝑖 and 𝑎𝑖−1 to 

determine the most favorable course of action. The update 

process involves recalculating 𝑄(𝑠, 𝑎) using the 

immediate reward (𝑟) and the discounted maximum 

expected future value 𝛾 max 𝑄(𝑠′, 𝑎′)
𝑎

. Equation (7) is 

used to update the Q-value in Table I through the learning 

process, as the agent optimizes its decision-making policy 

based on the cumulative reward received over time. 
 

𝑄′(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max
𝑎′∈𝐴

𝑄(𝑠′𝑎′) − 𝑄(𝑠, 𝑎)]  (7)       

 

Algorithm 1 : Q-Learning Algorithm 

Input : 𝑠, 𝑎, 𝛾, 𝛼 

Initialize 𝑄(𝑠, 𝑎): 

∀𝑠, ∀𝑎, 𝜋(𝑎|𝑠) =
1

|𝐴|
; 

repeat  

Initialization state 𝑆 

repeat 

Using (3), select action 𝑎 under state 𝑠; 

Obtain reward 𝑟 and the nest state 𝑠′; 
Using (7), update 𝑄(𝑠, 𝑎); 

𝑠 ← 𝑠′; 
until 𝑠 is terminated; 

until ∀𝑠, ∀𝑎, 𝑄(𝑎|𝑠) optimize; 

Output : policy 𝜋(𝑠) =   𝑄(𝑠, 𝑎)𝜋∈𝐴
𝑎𝑟𝑔𝑚𝑎𝑥

 

 

Initially, the rewards are present in the Q-table. An 
agent chooses an action through a policy in the starting 

state and moves to the next state. This process is repeated 

until the overall Q-value converges to a specific value 

where the Q-table is used to solve a given problem. 

 

 

 

C. Sarsa Algorithm 
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Sarsa is also based on the Q-table. The difference 

between Q-Learning and Sarsa is the value of the actual 

future action 𝑎𝑡+1 used instead of the maximum future 

value as shown in (7). At each step of each episode, the 

next action to take is determined rather than dynamically 

determining the step at the beginning of the next step. The 
target policy and behavior policy of SARSA follow ɛ-

greedy policies which depend on Q-value. Sarsa 

eventually converges on the near-optimal policy and the 

actual optimal policy cannot be obtained. Sarsa algorithm 

is as equation (8). 

 

𝑄′(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) − 𝑄(𝑠𝑡 , 𝑎𝑡)
+ 𝛼[𝑅𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1)] 

(8) 

 

Algorithm 2 : Sarsa Algorithm 

Input : 𝑠, 𝑎, 𝛾, 𝛼 

Initialize 𝑄(𝑠, 𝑎): 

∀𝑠, ∀𝑎, 𝜋(𝑎|𝑠) =
1

|𝐴|
; 

repeat  

Initialization state 𝑆 

repeat 

Using (3), select action 𝑎 under state 𝑠; 

Obtain reward 𝑟 and the nest state 𝑠′; 
Using (8), update 𝑄(𝑠, 𝑎); 

𝑠 ← 𝑠′; 𝑎 ← 𝑎′ 
until 𝑠 is terminated; 

until ∀𝑠, ∀𝑎, 𝑄(𝑎|𝑠) optimize; 

Output : policy 𝜋(𝑠) =   𝑄(𝑠, 𝑎)𝜋∈𝐴
𝑎𝑟𝑔𝑚𝑎𝑥

 

D. Implementation of the AGV Path Planning 

In this study, the AGV utilizes Sarsa algorithm which 

can dynamically interact with its external environment 

exploring paths through trial and error, and selecting the 

optimal route based on the accumulated learning 

experiences and an action selection strategy. During the 

process of continuous interaction with the environment, 

the AGV calculates the state-action value function 𝑄(𝑠, 𝑎) 

and stores it in the Q-table. As the AGV continues to 

explore and learn, 𝑄(𝑠, 𝑎) gradually converges to stable 

values. Once the Q-table converges, the AGV selects the 

action with the highest Q-value at each state to determine 

and execute the optimal path [17].   

IV. Results and Discussion 

The simulation has been conducted in MATLAB. The 

outcomes are systematically tabulated and presented in 

graphical form to illustrate the agent’s performance under 

the designated value of parameters. This section discusses 

the findings from the simulations, comparing the 

performance of the Q-learning and Sarsa algorithm in 

terms of learning rate and discount factor, denoted by α 

and γ, respectively, and step against episode. 

A. Performance of learning rate (α) 

In the analysis of α performance for both Q-learning and 

Sarsa, the constant parameters are tabulated as in Table IV 

with discount factor, γ = 0.9. The value range of 

α=[0.1,0.9] being analyzed were categorized into three 

categories which are lower α=[0.1,0.9], and higher 

α=[0.7,0.9]. Fig. 2 and Fig. 3 shows the performance of 
average rewards with lower and higher α respectively. 
 

TABLE IV 

CONSTANT PARAMETERS TO ANALYSIS PERFORMANCE 

Notation System Parameters Values 

𝑀 
Number of maximum states per 

episode 
500 

𝑁𝑖  Number of iterations 100 

ε Epsilon 0.9 

 

Fig. 2 shows the impact of different learning rates on 

average rewards in two reinforcement learning (RL) 

algorithms. For lower learning values, 𝛼=0.1, there are 

significant changes in average reward, with early rewards 
gradually increasing until reaching optimal levels. 

Increasing α to 0.3 leads to higher average rewards for 

both algorithms. Both algorithms at the lower learning 

rates converge around the 40th episode and converge 

faster compared to higher rates. Q-Learning shows smaller 

deviations in average rewards than Sarsa, implying that Q-

Learning may offer more consistent and reliable 

performance in achieving optimal rewards under the given 

parameters. However, Sarsa consistently displayed 

smaller reward deviations than Q-Learning, suggesting 

Sarsa's potential for more stable performance across 
various learning rates and its advantage in achieving 

optimal rewards. Q-Learning displays a wider range of 

average rewards and converges more slowly compared to 

Sarsa, which typically exhibits a narrower range of 

rewards and converges faster.  

In Fig. 3, the values of α are set to be α=[0.7,0.9] for 

higher learning rates. When α=0.7, the rewards increase at 

first and then decrease. Then, α=0.8 decreases 

inconsistently at first and then increases, and α=0.9 

gradually decreases and reaches the lower limit of the 

average reward. Q-Learning with α=0.7 converges at the 

44th episode, while the other values of α continue to 
fluctuate over the episodes without reaching a stable state. 

In the case of Sarsa, performance with α=0.7 remains 

considerably stable compared to the other two values of α. 

The latter exhibited dramatic oscillations around the near-

optimal value without achieving a stable state. Based on 

the observations of both algorithms, higher α leads to 

instabilities and hinders convergence to an optimal policy. 

Large learning rate values can result in erratic 

performance, making it challenging to achieve stable and 

reliable learning outcomes. Striking a balance between 

exploration and exploitation is crucial to ensure 
convergence and stability in RL algorithms. 

 



 

International Journal of Electrical Engineering and Applied Sciences 
 

 

 

ISSN: 2600-7495       eISSN: 2600-9633        IJEEAS Vol. 8, No. 1, April 2025 
 

 

 
Fig. 2.  Performance of average reward with lower α for (a) Q-

Learning; (b) Sarsa 

 

 

 
Fig. 3.  Performance of average reward with higher α for (a) Q-

Learning; (b) Sarsa 

B. Performance of discount factor (γ) 

In the performance analysis of the discount factor of Q-

learning and Sarsa, constant parameters have been used 

for both. The parameters include the number of maximum 

states per episode, the number of episodes, ε and α= [7, 

19]. The parameter values are tabulated in Table IV with 
α=0.7. The value range of γ=[0.1,0.9] being analyzed was 

categorized into three categories which are lower γ 

=[0.1,0.3] and higher γ =[0.7,0.9].  

Fig. 4 shows the cumulative reward for each episode 

with various γ. Based on the analysis of learning factor, α, 

the best α value that produces the highest generation value 

of average rewards for Q-Learning is 0.5 while that for 

Sarsa is 0.6. For comparison purposes, 0.5 of α was taken 

in the performance analysis of the discount factor. This 

value is used for the performance analysis of γ as the fixed 

parameter setting. 
The study assessed the influence of the discount factor, γ 

on the Q-Learning and Sarsa algorithms by analyzing its 

performance in lower and higher ranges, based on the 

results presented in Fig. 5. Within the range γ = [0.1, 0.3], 

Q-Learning achieved a cumulative reward of 3.33 %, 

which was higher than Sarsa's 0.33 %. Although both 

algorithms produced negative cumulative rewards in each 

of the 100 episodes, Q-Learning performed better, 

demonstrating a larger positive reward percentage and a 

more focused distribution of rewards within a smaller 

range. 
 

 
Fig. 4.  Performance of discount factor with various γ for (a) Q-

Learning; (b) Sarsa 

Transitioning to γ = [0.4, 0.6], Sarsa was the best with 

a significantly larger positive cumulative reward than Q-

Learning. In this range, Sarsa outperformed Q-Learning 

by exhibiting a more converging range of average 

rewards. As γ values increased to γ = [0.7, 0.9], Q-

Learning maintained its dominance, reaching a solid 

positive cumulative reward of 78% compared to Sarsa's 
significantly larger positive cumulative reward over the 

episodes. Both algorithms achieved their highest positive 

cumulative rewards at γ = 0.9, indicating a preference for 

long-term benefits over immediate gains at higher γ 

values. 

 
Fig. 5. Performance of discount factor with higher γ for (a) Q-Learning; 

(b) Sarsa 

 

Fig. 5 shows that Q-Learning outperformed Sarsa for 

cumulative reward at discount factor levels γ =[0.7,0.9]. 

Q-Learning received a positive cumulative reward of 

78%, whereas Sarsa received an even higher positive 
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cumulative reward of 82.66%. Notably, Q-Learning had a 

higher percentage by 86% of cumulative rewards falling 

between -20 and 100, compared to Sarsa's by 84% within 

the broader range of -60 to 50.  

This demonstrates ability Q-Learning's capacity to 

accumulate rewards across several episodes, 

outperforming Sarsa's performance. The higher 
cumulative reward gained by Q-Learning demonstrates its 

capacity to successfully learn and utilise rewards within 

the limitations imposed. Q-Learning converged earlier 

than Sarsa, around the, respectively, 6th and 9th episodes, 

but had higher fluctuations. Thus, analysing discount 

factor performance demonstrates its remarkable influence 

on cumulative rewards and convergence speed in Q-

Learning and Sarsa algorithms, with consequences for 

learning efficiency and reward outcomes. 

C. Performance of episode steps 

The performance analysis of Q-learning and Sarsa 
algorithms, conducted under constant parameters 

including γ=0.9, selected based on the highest cumulative 

rewards observed. Fig. 6.(a) shows the performance in 

terms of episode steps, indicating notable differences in 

their exploration and convergence behaviors Q-Learning 

has a greater maximum route length of 337, indicating a 

more extensive exploration process and possibly slower 

convergence to optimum policy, whereas Sarsa has a 

shorter maximum path length of 210, implying faster 

convergence. Moreover, Q-Learning's longer total 

execution time implies greater computational demands or 

slower convergence relative to Sarsa. This could be 
attributed to Q-Learning's broader exploration, resulting in 

a more comprehensive search for optimal policy and 

longer convergence time, while Sarsa's focused 

exploration enables relatively quicker convergence.  

 Fig. 6.(b) shows the performance of total agent steps, 

with Q-Learning demonstrating phased increases and 

Sarsa displaying a more gradual rise with an early spike. 

The higher overall steps required by Q-Learning indicate 

its exploration of a larger action-state space or prolonged 

convergence, highlighting the trade-off between 

exploration and exploitation.  
Q-Learning's phased increase suggests a balance 

between intensive exploration and subsequent 

exploitation, potentially leading to the discovery of 

optimal policy, whereas Sarsa's more gradual exploration 

may prioritize efficiency but risks missing optimal 

solutions. Sarsa focuses on the agent's performance during 

the learning process by considering the exploration-

exploitation trade-off and incorporating an epsilon-greedy 

policy and it can learn to avoid dangerous actions more 

quickly than Q-learning. It updates its Q-values based on 

the current state-action pair and the immediate reward, 
considering the next action chosen according to the policy 

being followed.  

 

 
Fig. 6.  Performance of (a) episode steps (b) total agent steps. 

 

Sarsa is recommended for situations where the agent's 

performance during the learning process matters, and the 

agent's actions can directly impact the learning process 

itself, where the agent prefers a safer path and minimizes 

the risks during the learning phase. 

V. Conclusion 

In this paper, the AGV path planning was addressed 

utilizing the RL, Q-learning and Sarsa. AGV performance 

was analyzed by comparison between Q-learning and 

Sarsa is analyzed based on learning rate (α), discount 

factor (γ), and step against episode. The results 

demonstrated that the optimal rate (𝛼) for Q-Learning and 

Sarsa is 0.5 and 0.6 respectively, while both algorithms 

perform better high discount factors (𝛾 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 1). The 

convergence time of Sarsa was greater than that of Q-

learning, indicating that Q-learning fewer steps to 

stabilize. 

The dissimilar update rules of Q-learning and Sarsa 

render them suitable for different scenarios. Q-learning 

focuses on identifying the optimal policy by updating Q-

values based on the maximum expected future reward, 

making it suitable for environments where exploration is 

important. It can be effectively used in a practice phase 

where the agent explores using an epsilon-greedy policy 

(𝜀), followed by an optimal greedy policy during an 

important deployment. On the other hand, Sarsa’s on 

policy approach makes it beneficial in scenarios requiring 

more stable learning during the training phase. For future 

work, visualization of AGV performance can be further 

developed to apply in AGV system for solving material 

handling problem, contributing to the future of Industry 

4.0 in the Asian region. 
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