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Abstract – In this paper, an improved variant of the Tuna Swarm Optimization (TSO) algorithm 

called the Improved Tuna Swarm Optimization (ITSO) algorithm is proposed. An alternative way to 

determine the weight (p) value to improve the convergence speed of the original Tuna Swarm 

Optimization (TSO) algorithm is the primary objective. This method comes along with an adaptive 

fitness weight strategy which is used to replace the former approach for the weight value calculation 

to significantly improve the algorithm’s performance on high-dimensional problems. The proposed 

ITSO, the original TSO, and the Harris Hawk Optimization (HHO) algorithms were implemented 

in MATLAB software and tested on standard benchmark test functions and the pressure vessel 

design optimization problem. Through extensive simulations, the ITSO algorithm exhibits 

exceptional performance, outperforming the TSO and HHO algorithms across a variety of test 

functions. When restricting the three algorithms to a maximum of 100 iterations, the ITSO algorithm 

achieves considerably faster convergence on approximately 84.6% of the thirteen (13) test functions. 

Furthermore, an engineering design problem (the pressure vessel design problem) demonstrates the 

superior performance of the ITSO algorithm, yielding the best cost value of 5880.9471 as compared 

to 5885.3327 for the original TSO and 6393.0927 for the HHO. Given the ITSO algorithm's 

remarkable performance relative to the TSO and the HHO algorithms, the proposed ITSO is 

validated as an enhanced variant of the TSO. The ITSO can be applied to optimization problems in 

the electrical engineering field such as renewable energy integration and parameter tuning of 

control systems. 
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I. Introduction 

In the domain of nature-inspired optimization 

algorithms, enhancing the ability to handle high-

dimensional problems by improving convergence speed 

with accurate techniques is a pursuit that drives innovation 

and global performance improvements [1]. The pursuit to 

find more efficient algorithms has led to the development 

of numerous metaheuristic techniques which sometimes 

have some gaps, each aiming to address specific 

optimization challenges [2]-[4]. For example, the foraging 

behavior of pelicans has inspired the development of the 

pelican optimization algorithm (POA) for solving 

engineering design problems [5], the artificial  

 

 

 

gorilla troops optimizer inspired by gorillas to solve high-

dimensional optimization problems [6], and so on. 

Among these, Tuna Swarm Optimization (TSO) has 

proven to be a robust and effective method for solving 

complex optimization problems [7]. However, like many 

optimization algorithms, TSO has an inherent limitation in 

terms of handling high-dimensional problems. It 

converges slowly on such optimization problems and this 

can lead to the production of suboptimal solutions [8]. 

This paper introduces an improvement modification to 

the Tuna Swarm Optimization algorithm, which is term as 

the Improved Tuna Swarm Optimization (ITSO)  
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algorithm, which focuses on balancing its exploration and  

exploitation mechanisms for efficient convergence from 

local optimal to global optimal solutions.  

About the conventional optimization approaches, the 

ITSO algorithm introduces an adaptive fitness weight 

mechanism that dynamically adjusts the great impact of 

fitness values during the optimization process to improve 

the convergence speed. This adaptive fitness weight 

concept is aimed to facilitate faster convergence to optimal 

solutions, making it a promising avenue for addressing the 

TSO algorithm's slow convergence limitations [9]. 

 To assess the worth of the effectiveness of the proposed 

ITSO algorithm, this study conducts a comprehensive 

assessment that includes both simulation-based 

comparisons and convergence analysis [10]-[11]. The 

proposed ITSO algorithm is implemented in MATLAB 

software, adhering to the same parameter settings as the 

original TSO algorithm [7]. Subsequently, performance 

results are compared with those of TSO and the Harris 

Hawks Optimization (HHO) algorithm, two well-

established optimization techniques in the literature [7]-

[11]. 

The experiments are designed with an interest in the 

algorithm’s ability to handle high-dimensional problems 

with fast convergence to better solutions which will lead 

to efficient transition from local optimal to global optimal. 

Hence, attention is given to the problem dimensions and 

maximum number of iterations on each test function. 

Benchmark functions are employed to assess the 

performance of the ITSO algorithm in comparison to the 

original TSO and the HHO [7]-[12]. 

In addition to presenting comparative results, this paper 

provides detailed convergence curves, offering a visual 

representation of the convergence characteristics of the 

ITSO algorithm. These curves vividly illustrate the 

efficient convergence capabilities of the ITSO, 

emphasizing its potential in the field of optimization by 

addressing the need for efficient convergence to better 

solutions. 

The impact of this research is not only to the 

advancement of optimization algorithms but also to 

emphasize the great impact of adaptive fitness weights in 

improving metaheuristic algorithms. Weight-based 

modifications make algorithms have a strong positive 

impact on obtaining better solutions in applications where 

faster convergence is a crucial requirement, including real-

world problems in engineering [13], economics, and 

various other domains.  

This work serves as a testament to the in-progress 

attempt to speed the boundaries of optimization, 

demonstrating that small yet innovative modifications can 

yield substantial improvements in algorithms’ 

performance. 

II. Methodology 

This section presents the conventional tuna swarm 

optimization (TSO) algorithm, and a proposed 

modification to create an effective variant from the tuna 

swarm optimization algorithm to nullify premature 

convergence and enhance global performance for best 

solutions. 

A. The Original Tuna Swarm Optimization (TSO) 

Algorithm 

The Tuna Swarm Optimization (TSO) algorithm is a 

nature-inspired metaheuristic algorithm that derived its 

inspiration from the foraging behavior of tuna fish [7]. The 

foraging technique comprised of two stages detailed as 

follows. 

The initial approach is spiral foraging, where tuna use 

a spiral formation during hunting. This method allows 

them to herd their prey into shallower waters, making it 

easier to capture. By adopting this spiral tactic, tuna 

effectively corral their prey and enhance their chances of 

a successful hunt. 

The second method, known as parabolic foraging, 

involves each tuna following the one ahead, forming a 

parabolic pattern to effectively encircle its prey. The Tuna 

Swarm Optimization (TSO) algorithm is inspired by these 

natural foraging behaviors of tuna, particularly the spiral 

and parabolic strategies. By mimicking these tactics, the 

TSO algorithm enhances its optimization processes. The 

mathematical modeling of these behaviors is presented 

below: 

 

Initialization: 

 Like many other nature-inspired metaheuristic 

algorithms, TSO commences the optimization process by 

randomly generating initial populations distributed 

uniformly across the search space using (1). 

 

𝑋𝑖
𝑖𝑛𝑡 = 𝑟𝑎𝑛𝑑. (𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏,      𝑖 = 1, 2, …𝑁𝑃  (1) 

 

where; 𝑥𝑖
𝑖𝑛𝑡 is the ith individual, 𝑙𝑏 and 𝑢𝑏 are the lower 

and upper bounds of the search space, NP represents the 

number of tuna populations, and the rand is a uniformly 

distributed random vector with values ranging from 0 to 1. 

 

Spiral foraging:  

When faced with predators, small schooling fish such 

as sardines and herring adopt a dynamic formation, 

constantly changing their swimming direction to thwart 

predators' targeting efforts [14]-[15]. In contrast, tuna 

groups employ a tightly coiled spiral formation to pursue 

their prey. While most fish in the school may lack a strong 

sense of direction, they adjust their course to align with a 

small group of purposeful swimmers, ultimately forming 

a united hunting force [16]. Additionally, tuna schools 
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engage in information exchange, with each tuna following 

the fish ahead, facilitating the sharing of information 

among neighboring tuna.  

 

𝑋𝑖
𝑡+1 =

{
𝑎1. (𝑋𝑏𝑒𝑠𝑡

𝑡 + 𝛽. |𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡|) + 𝑎2. 𝑋𝑖
𝑡 , 𝑖 = 1

𝑎1. (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽. |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡|) + 𝑎2. 𝑋𝑖−1

𝑡 , 𝑖 = 2,3, . . 𝑁𝑃
  (2) 

 

Also, when the most suitable member of the group 

cannot locate food, mindlessly trailing this individual 

during foraging is counterproductive. Thus, the idea of 

creating a random point within the search area as a 

reference for the spiral search was developed. This 

approach enables each group member to explore a broader 

area and enhances the group's ability to engage in global 

exploration. The precise mathematical model is outlined 

as follows: 

 
𝑋𝑖
𝑡+1 =

{
𝛼1. (𝑋𝑏𝑒𝑠𝑡

𝑡 + 𝛽. |𝑋𝑟𝑎𝑛𝑑
𝑡 − 𝑋𝑖

𝑡|) + 𝛼2. 𝑋𝑖
𝑡 , 𝑖 = 1

𝛼1. (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽. |𝑋𝑟𝑎𝑛𝑑

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2. 𝑋𝑖−1

𝑡 , 𝑖 = 2,3, . . 𝑁𝑃
 (3) 

 

𝛼1 = 𝑎 + (1 − 𝑎).
𝑡

𝑡𝑚𝑎𝑥
           (4) 

𝛼2 = (1 − 𝑎) − (1 − 𝑎).
𝑡

𝑡𝑚𝑎𝑥
         (5) 

𝛽 = 𝑒𝑏𝑙 . 𝑐𝑜𝑠(2𝜋𝑏)             (6) 

𝑙 = 𝑒
3𝑐𝑜𝑠(((𝑡𝑚𝑎𝑥+

1
𝑡)−1)𝜋)           (7) 

 

where; 𝑋𝑖
𝑡+1 represents the individual in the next iteration, 

𝑋𝑏𝑒𝑠𝑡
𝑡  denotes the current best individual or optimal 

choice. 𝛼1 and 𝛼2 are coefficients that influence how 

individuals are inclined to move toward the best choice 

and their previous selection. 𝑎 is a constant that 

determines the extent to which the individuals follow the 

best choice and the preceding selection in the initial phase. 

t represents the current iteration number, 𝑡𝑚𝑎𝑥 is the 

maximum number of iterations allowed, and 𝑏 is a 

randomly generated number uniformly distributed 

between 0 and 1. 

 

Parabolic Foraging: 

Apart from the spiral feeding pattern, tunas engage in 

cooperative feeding by adopting a parabolic formation. In 

this formation, they use a reference point, which is 

typically the location of their food. Furthermore, tunas 

actively search for food in their immediate surroundings. 

These dual feeding methods are executed together, each 

with an equal assumed likelihood of 50%. The 

mathematical model that describes this phenomenon can 

be outlined as follows: 

 
Xi
t+1 =

{
Xbest
t + rand. (Xbest

t -Xi
t) + TF. p2. (Xbest

t -Xi
t), if  r < 0.5

TF. p2Xi
t,                                       if   r ≥ 0.5

(8) 

 

𝑝 = (1 −
𝑡

𝑡𝑚𝑎𝑥
)

𝑡

𝑡𝑚𝑎𝑥            (9) 

 

where TP is a random number with a value of 1 or -1. 

The above detail elaborated mathematical modeling of 

the foraging behavior of the tuna fish swarm in the aquatic 

environment is the major instrument behind the TSO 

algorithm. Just like other metaheuristic algorithms, the 

TSO algorithm follows systematic steps for effective 

implementation. The implementation procedure is 

presented in Fig. 1.  

 

Start

Initialize random population of tuna

Assign parameters a and z

Calculate fitness values of tunas

Update α1, α2, and p

rand<zt/tmax 
<rand

rand<0.5

Update the 
population 

using eq. (3)

No

Yes

Update the 
population 

using eq. (2)

Update the 
population 

using eq. (8)

Update the 
population 

using eq. (1)

Yes
No

No Yes

t<tmax

Yes

End

No

 
Fig. 1. Implementation Flowchart of TSO 

B. Proposed Modification 

The modification proposed in this work is to improve 

the performance of the TSO algorithm in terms of 

obtaining better solutions with faster convergence. This 

mainly involves the introduction of alternative weight 

calculation in the parabolic foraging phase. In this phase, 

the weight p is calculated using Eqn. (9). This approach of 

determining the value of p is mainly dependent on the 

maximum number of iterations and the iteration counter 

which gives a decreasing weight value. The dependence 

on the maximum number of iterations is the key cause of 

the slow convergence of the TSO in some cases 

(especially in solving high-dimensional problems). 

To remedy this drawback, an adaptive fitness weight 

approach is proposed to replace the traditional one given 

in Eqn. (9) to enhance the algorithm’s convergence speed 

to better solutions. Adaptive fitness weighting accelerates 
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convergence by dynamically adjusting the importance of 

solutions based on their fitness, allowing the TSO to 

efficiently focus on promising regions, prevent premature 

convergence, and adapt to changing fitness landscapes, 

thus enhancing exploration, exploitation, and resource 

allocation that would ultimately improve the algorithm's 

convergence speed in various optimization problems to 

produce better global solutions [17]-[18]. The proposed 

calculation of weight, p, is presented in (10) below [19]. 

𝑝 =
𝑓𝑖𝑡(𝑋𝑖

𝑡)

∑ 𝑓𝑖𝑡(𝑋𝑖
𝑡)𝑡

𝑖=1

               (10) 

where 𝑓𝑖𝑡(𝑋𝑖
𝑡) is the fitness of the individual tuna in 

iteration t. This adaptive weight is distinct from other 

techniques as it primarily depends on the individual fitness 

of the population to guide convergence. It is important to 

note that the weight is calculated at every iteration using 

Eqn. (10). The proposed ITSO algorithm implementation 

procedure is presented as follows: 

1. Generate the initial tuna population randomly 

2. Assign the values of parameters a and z 

3.  Calculate the fitness of the tuna population. 

4. Update the values of α1, α2, and p using (4), (5), 

and (10) respectively. 

5. If rand<z, update the population using (1). 

6. If rand<0.5, update the population using (8). 

7. If t/tmax<rand, update the population using (3). 

8. If t/tmax>rand, update the population using (2). 

9. Repeat steps 3 to 8 if (t<tmax). 

10. End and present the best fitness value as the 

optimal solution if (t≥tmax). 

C. Experimental Test Setup  

Test on Standard Benchmark Functions: 

To evaluate the performance of the proposed ITSO 

algorithm, the same set of widely recognized benchmark 

functions utilized in [7] is employed for testing purposes. 

This collection includes 7 unimodal functions, 6 

multimodal functions, and 10 complex multimodal 

functions. The unimodal functions, designated as F1–F7, 

have a single global optimal solution and are often used to 

assess an algorithm's ability to effectively exploit the local 

search space.  

On the other hand, the multimodal functions, identified 

as F8–F13, feature multiple local optimal solutions, 

providing a challenge for the algorithm in terms of global 

exploration and the ability to avoid local optima. Detailed 

characteristics of these benchmark functions are available 

in Table I.  

By testing the ITSO algorithm against these benchmark 

functions, its efficiency and robustness in both local and 

global optimization scenarios can be comprehensively 

assessed. This rigorous testing ensures that the algorithm's 

strengths and potential weaknesses are thoroughly 

examined, providing valuable insights into its overall 

performance. 
TABLE I 

CHARACTERISTICS OF BENCHMARK FUNCTIONS 

Func

tion 

Name Dim Range Global 

Solution 

F1 Sphere 30 [-100, 100] 0 

F2 Schwefel 2.22 30 [-10, 10] 0 

F3 Schwefel 1.2 30 [-100, 100] 0 

F4 Schwefel 2.21 30 [-100, 100] 0 

F5 Rosenbrock 30 [-30, 30] 0 

F6 Step 30 [-100, 100] 0 

F7 Quartic 30 [-1.28, 1.28] 0 

F8 Schwefel 2.26 30 [-500, 500] -418.9829∗D 

F9 Rastrigin 30 [-5.12, 5.12] 0 

F10 Ackley 30 [-32, 32] 8.881E-16 

F11 Griewank 30 [-600, 600] 0 

F12 Penalized 30 [-50, 50] 0 

F13 Penalized 2 30 [-50, 50] 0 

The identical simulation parameter configurations 

employed in the TSO algorithm [7] have been applied in 

this test for conducting a fare comparison. The parameter 

settings are presented in Table II. 

 
TABLE II  

PARAMETER SETTINGS 

Algorithm Parameters 

HHO ~ 

TSO a=0.7, z=0.05 

ITSO a=0.7, z=0.05 

The simulation tests were run in MATLAB R2019a 

software using an HP Pavilion laptop computer with the 

following specifications: 64-bit Windows operating 

system, AMD A8-6410 APU processor with a clock speed 

of 2.00GHz, and installed RAM of 4GB (3.43 GB usable). 

 

Test on Engineering Design Problem (Pressure Vessel 

Design Problem): 

The issue of pressure vessel design presented in Fig. 2 

is a widely recognized test case that aims to minimize the 

overall expenses, encompassing expenses related to 

shaping, materials, and welding. This problem involves 

four distinct factors: the thickness of the vessel (Ts, 

represented as x1), the thickness of the head (x2), the inner 

diameter (R, represented as x3), and the length of the 

cylindrical cross-section of the vessel (L, represented as 

x4). The problem is outlined as follows: 

 

min. f (x1, x2, x3, x4) = 0.6224x1x3x4 + 1.7781x2x3
2 

+3.1661x1
2x4 + 19.84x1

2x3  (11) 

Subject to: 

{
 
 

 
 

𝑔1(𝑥) = −𝑥1 + 0.0193𝑥3 ≤ 0,

𝑔2(𝑥) = −𝑥2 + 0.00954𝑥3 ≤ 0,

𝑔3(𝑥) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

2 + 1,296,000 ≤ 0,

𝑔4(𝑥) = 𝑥4 − 240 ≤ 0,

 (12) 
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Variable ranges: 1 × 0.0625 ≤ 𝑥1, 𝑥2 ≤ 99 × 0.0625,
10 ≤ 𝑥3, 𝑥4 ≤ 200  

 
Fig. 2. Schematic of the pressure vessel design problem 

III. Results and Discussion 

This section presents the simulation results of the ITSO 

algorithm, comparing its performance to the original TSO 

algorithm and the HHO algorithm. The evaluation is 

conducted using benchmark functions and the pressure 

vessel design problem [20]-[21]. 

A. Results on standard benchmark functions 

To effectively assess the ITSO algorithm, its 

performance is compared across different problem 

dimensions: 30, 100, and 500. These comparisons are 

detailed in Table III, Table IV, and Table V, respectively, 

to evaluate the algorithm's capability in handling high-

dimensional problems. The analysis of the results is 

presented following each table, providing insights into the 

ITSO algorithm's effectiveness and robustness across 

varying problem complexities. This comprehensive 

evaluation aims to highlight the algorithm's strengths and 

potential areas for improvement when dealing with 

different scales of problem dimensions. 

Table III presents a comparative analysis of the results 

obtained from the three algorithms, evaluated using a 

problem dimension of 30 across thirteen benchmark 

functions, labeled F1 to F13. The findings reveal that the 

Improved Tuna Swarm Optimization (ITSO) algorithm 

significantly outperforms both the original Tuna Swarm 

Optimization (TSO) and the Harris Hawks Optimization 

(HHO) algorithms in terms of average performance and 

standard deviation. This exceptional performance, 

however, is not consistent across all benchmark functions, 

as it falls short in functions F1, F3, F9, F10, and F11. 

In the cases of F1 and F3, both the ITSO and TSO 

algorithms were able to achieve the global optimum 

solutions, demonstrating comparable effectiveness in 

these specific instances. Furthermore, all three algorithms, 

including ITSO, TSO, and HHO, succeeded in attaining 

global average and standard deviation solutions for 

functions F9, F10, and F11. Despite these exceptions, the 

overall performance highlighted in Table III suggests that 

the ITSO algorithm is generally superior in tackling 

optimization problems across various domains when 

compared to its counterparts, TSO and HHO. 

 
TABLE III  

COMPARISON OF RESULTS ON F1-F13 FOR 1000 ITERATIONS WITH 30D 

Function  ITSO TSO HHO 

F1 Av 

Std 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

3.92E−193 

0.00E+00 

F2 Av 

Std 

0.00E+00 

0.00E+00 

1.47E−235 

0.00 E+00 

3.54E−102 

1.17E−101 

F3 Av 

Std 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

1.98E−155 

1.09E−154 

F4 Av 

Std 

0.00E+00 

0.00E+00 

2.39E−236 

0.00E+00 

3.11E−98 

1.14E−97 

F5 Av 

Std 

5.35E-05 

5.33E-05 

1.22E−04 

3.16E−04 

9.96E−04 

1.09E−03 

F6 Av 

Std 

2.59E-08 

7.26E-08 

1.77E−08 

9.08E−08 

9.32E−06 

1.44E−05 

F7 Av 

Std 

3.66E-05 

3.19E-05 

1.15E−04 

7.56E−05 

3.67E− 05 

3.20E− 05 

F8 Av 

Std 

-1.25E+04 

1.99E-06 

-1.26E+04 

1.64E−06 

−1.26 

E+04 

8.89E−02 

F9 Av 

Std 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

F10 Av 

Std 

8.88E-16 

0.00E+00 

8.88E−16 

0.00E+00 

8.88E−16 

0.00E+00 

F11 Av 

Std 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

F12 Av 

Std 

6.26E-11 

6.96E-11 

3.16E−10 

8.13E−10 

8.06E−07 

1.06E−06 

F13 Av 

Std 

3.23E-10 

5.25E-10 

1.93E−09 

4.41E−09 

5.48E−06 

5.87E−06 

 

This comparative performance evaluation emphasizes 

the potential of the ITSO algorithm as a robust solution for 

optimization challenges. The ability to outperform both 

the original TSO and HHO in most scenarios showcases 

its effectiveness and adaptability in diverse applications. 

To evaluate the performance of the ITSO algorithm 

with an increased problem dimension of 100, a 

comparative analysis was conducted against the original 

TSO and the HHO algorithms, as illustrated in Table IV. 

The results indicated that the ITSO algorithm generally 

outperformed both the TSO and HHO algorithms across 

most benchmark functions. The only exception was in 

function F6, where the HHO algorithm achieved the best 

performance. Nonetheless, the ITSO showed 

improvement in F6 compared to the original TSO. 

For functions F1 and F3, both the ITSO and TSO 

algorithms were able to reach the global optimum 

solutions. Additionally, all three algorithms - ITSO, TSO, 

and HHO - successfully identified the global solutions for 

functions F9, F10, and F11. This assessment highlights the 

effectiveness of the ITSO algorithm in adapting to 

increased problem dimensions and demonstrates its 

competitive edge in optimization tasks, further solidifying 

its role as a strong candidate among the algorithms 

evaluated.  
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TABLE IV  

COMPARISON OF RESULTS ON F1-F13 FOR 1000 ITERATIONS  
WITH 100D 

Function  ITSO TSO HHO 

F1 Av 

Std 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

5.76E−190 

0.00E+00 

F2 Av 

Std 

0.00E+00 

0.00E+00 

1.96E−231  

0.00 E+00 

3.05E−100 

1.30E−99 

F3 Av 

Std 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

2.81E−145 

1.54E−144 

F4 Av 

Std 

0.00E+00 

0.00E+00 

1.49E−229 

0.00E+00 

1.30E−97 

4.59E− 97 

F5 Av 

Std 

2.53E-04 

3.55E-04 

1.15E−01  

4.32E−01 

3.74E−03 

5.74E−03 

F6 Av 

Std 

1.02E-03 

7.30E-04 

1.08E−03  

2.11E−03 

3.41E−05 

5.76E−05 

F7 Av 

Std 

3.54E-05 

3.92E-05 

1.17E−04  

1.62E−04 

4.11E−05 

6.24E−05 

F8 Av 

Std 

-4.19E+04 

5.13E-02 

−4.19E+04 

8.33E−02 

−4.19 

E+04 

3.21E−01 

F9 Av 

Std 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

F10 Av 

Std 

8.88E−16 

0.00E+00 

8.88E−16 

0.00E+00 

8.88E−16 

0.00E+00 

F11 Av 

Std 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

F12 Av 

Std 

1.69E-07 

1.18E-07 

3.03E−06  

8.46E−06 

3.47E−07 

5.00E−07 

F13 Av 

Std 

1.16E-05 

1.67E-05 

1.44E−04  

2.32E−04 

1.19E−05 

1.74E−05 

 

To get a more convincing performance of the ITSO 

algorithm, the problem dimension was further increased to 

500 and the result is presented in Table V. 

 
TABLE V 

COMPARISON OF RESULTS ON F1-F13 FOR 1000 ITERATIONS  
WITH 500D 

Function  ITSO TSO HHO 

F1 Av 

Std 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

6.83E−192 

0.00E+00 

F2 Av 

Std 

0.00E+00 

0.00E+00 

1.24E−230  

0.00 E+00 

4.93E−96 

2.70E−95 

F3 Av 

Std 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

1.08E−87 

5.91E−87 

F4 Av 

Std 

3.15E-238 

0.00E+00 

2.22E−228 

0.00E+00 

7.26E−94 

3.97E−93 

F5 Av 

Std 

2.38E-03 

9.78E-03 

9.10E−01  

1.41 E+00 

1.53E−02 

1.80E−02 

F6 Av 

Std 

1.67E-01 

2.83E-01 

1.68E−01  

2.27E−01 

1.01E−04 

1.27E−04 

F7 Av 

Std 

3.33E-05 

3.02E-05 

1.20E−04  

1.13E−04 

3.74E−05 

3.03E−05 

F8 Av 

Std 

-2.09E-05 

2.05E-01 

−2.09E+05 

7.35E−01 

−2.09 E+5 

1.36 E+00 

F9 Av 

Std 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

F10 Av 

Std 

8.88E−6 

0.00E+00 

8.88E−06 

0.00E+00 

8.88E−06 

0.00E+00 

F11 Av 

Std 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

F12 Av 

Std 

9.67E-06 

8.44E-06 

2.02E−05  

5.06E−05 

2.78E−07 

3.95E−07 

F13 Av 

Std 

7.16E-04 

1.33E-03 

4.21E−03  

1.21E−02 

4.36E−05 

7.01E−05 

Table V displays a performance pattern similar to that 

observed in Table IV, with notable exceptions for 

functions F12 and F13. When the problem dimension was 

significantly increased to 500, the performance of the 

ITSO algorithm in F12 and F13 was adversely affected, 

leading to its underperformance compared to the HHO 

algorithm. Despite this, the ITSO algorithm still 

demonstrated a significant advantage over the original 

TSO algorithm, achieving competitive results against the 

HHO algorithm for the test functions F12 and F13. 

Throughout all three tables, the ITSO consistently 

exhibited superior performance relative to the other 

algorithms, as indicated by its average (Av) and standard 

deviation (Std) values. 

In addition to enhancing overall performance, a key 

objective of the proposed ITSO algorithm is to improve 

convergence speed. To evaluate this aspect, simulations of 

the three algorithms were conducted using the default 

problem dimension of 30, but with a reduced number of 

iterations set to 100. The results of this simulation are 

summarized in Table VI, which further illustrates the 

convergence characteristics of each algorithm. This focus 

on convergence speed, alongside performance 

improvements, highlights the effectiveness of the ITSO 

algorithm in optimization tasks. 

 
TABLE VI 

COMPARISON OF RESULTS ON F1-F13 FOR 100 ITERATIONS WITH 30D 

Function ITSO TSO HHO 

F1 Av 

Std 

0.00E+00 

0.00E+00 

5.43E-47 

2.97E-46 

3.70E-23 

1.38E-22 

F2 Av 

Std 

1.87E-134 

1.02E-133 

1.71E-25 

7.21E-25 

5.62E-13 

1.33E-12 

F3 Av 

Std 

2.81E-111 

1.54E-110 

2.92E-45 

1.25E-44 

2.50E-14 

8.82E-14 

F4 Av 

Std 

1.92E-81 

1.05E-80 

1.21E-24 

4.24E-24 

4.58E-12 

1.50E-11 

F5 Av 

Std 

3.23E+00 

7.07E+00 

8.47E+00 

1.10E+01 

5.87E+00 

3.34E+01 

F6 Av 

Std 

3.97E-02 

4.30E-02 

2.65E-01 

2.94E-01 

3.58E-01 

4.72E-01 

F7 Av 

Std 

3.36E-04 

3.42E-04 

1.19E-03 

9.26E-04 

8.18E-04 

8.35E-04 

F8 Av 

Std 

-1.256E+04 

3.9769E+00 

-12561E+04 

1.3465E+01 

-1.2354E+04 

768.356E+00 

F9 Av 

Std 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

F10 Av 

Std 

8.88E-16 

0.00E+00 

8.88E-16 

0.00E+00 

1.636E-13 

3.2832E-13 

F11 Av 

Std 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

0.00E+00 

F12 Av 

Std 

3.540E-04 

4.236E-04 

4.224E-03 

8.701E-03 

5.4757E-04 

5.6237E-04 

F13 Av 

Std 

1.210E-02 

1.804E-02 

1.664E-02 

2.5247E-02 

3.2811E-02 

3.7605E-02 

 

The results presented in Table VI indicate that the ITSO 

algorithm outperforms both the original TSO and the 

HHO algorithms across functions F1, F2, F3, F4, F5, F6, 

F7, F8, F12, and F13. Additionally, for functions F9 and 

F11, all three algorithms successfully achieved global 
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optimal solutions. In function F10, both the ITSO and 

original TSO algorithms also attained the global solution. 

Overall, the ITSO algorithm demonstrates superior 

performance compared to the other algorithms, 

particularly regarding fast convergence to improved 

solutions. 

The convergence characteristics of the algorithms are 

further illustrated in the subsequent curves, which provide 

a more detailed comparison of their performance over the 

iterations. This analysis reinforces the effectiveness of the 

ITSO algorithm in achieving quicker convergence while 

maintaining a competitive edge in optimization tasks. By 

consistently delivering better results across multiple 

functions, the ITSO algorithm stands out as a promising 

approach for optimization challenges. 

B. Convergence Characteristics 

The curves illustrated below represent the convergence 

characteristics of the three algorithms (ITO, TSO, and 

HHO) from simulations with a maximum iteration of 100. 

These compare the algorithms' convergence properties 

concerning fast convergence to better solutions. Figure 3-

15 shows the thirteen (13) standard benchmark functions 

and hence presents the convergence characteristics of the 

three (3) algorithms on all the test functions. The curves 

are extensively elaborated for clear interpretations. 

 

 
Fig. 3. Convergence on Sphere 

 
Fig. 4. Convergence on Schwefel 2.22 

 
Fig. 5. Convergence on Schwefel 1.2 

 
Fig. 6. Convergence on Schwefel 2.21 
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Fig. 7. Convergence on Rosenbrock 

 
Fig. 8. Convergence on Step 

 
Fig. 9. Convergence on Quartic 

 
Figure 10: Convergence on Schwefel 2.26 

 
Fig. 11. Convergence on Rastrigin 

 
Fig. 12. Convergence on Ackley 
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Fig. 13. Convergence on Griewank 

 
Fig. 14. Convergence on Penalized 

 
Fig. 15. Convergence on Penalized 2 

From the convergence curves, the presumed ITSO 

algorithm, represented by the green curves, showed 

exceptionally better convergence characteristics in F1, F2, 

F3, F4, F5, F6, F7, F9, F10, F11, and F13. These represent 

about 84.6% of the 13 functions tested. In the case of 

functions F8 and F12, the three algorithms produced very 

close convergence characteristics with the ITSO algorithm 

slightly better at the final solutions. Generally, there has 

been great improvement in the convergence speed of the 

modification without deteriorating the effective 

exploration to better optimal solutions. 

C. Performance on Engineering Design Problem 

(Pressure Vessel Design Problem) 

The performance of a typical engineering design 

problem, the pressure vessel design problem, is assessed 

in Table VII.  

 
TABLE VII  

RESULTS COMPARISON ON PRESSURE VESSEL  

DESIGN PROBLEM 

Algorithm HHO TSO ITSO 

X1 0.9459 0.7782 0.7782065 

X2 0.4471 0.3846 0.3830365 

X3 46.8513 40.3196 40.31963 

X4 125.468 199.999 200 

Optimal Cost 6393.0927 5885.3327 5880.9471 

 

The ITSO algorithm simulation result on the design 

problem is compared to those of the original TSO and the 

HHO algorithms reported in the literature. This test is to 

assess the potential of the ITSO algorithm on engineering 

optimization problems, and it is obvious the ITSO 

algorithm outperformed the other algorithms with the 

lowest cost value of 5880.9471 against that of 5885.3327 

and 6393.0927 for the TSO and HHO algorithms 

respectively. 

The findings indicate that utilizing the ITSO algorithm 

could lead to more efficient and reliable solutions in 

optimization tasks, reinforcing its position as a preferred 

choice among the evaluated algorithms. Overall, this 

analysis underscores the advancements made by the 

proposed ITSO algorithm in the field of optimization. 

IV. Conclusion and Recommendation 

A modified version of the TSO algorithm called the 

Improved Tuna Swarm Optimization (ITSO) algorithm is 

proposed. An adaptive fitness weight strategy is used to 

represent the formal strategy for calculating the weight 

value to arrive at quick optimal convergence to better the 

solutions of the conventional approach which is the Tuna 

Swarm Optimization (TSO) algorithm. Simulation tests 

using the same parameter settings in the literature of the 

original TSO algorithm showed exceptional performance 

of the ITSO over the TSO and the HHO algorithms. A test 

of the three algorithms on the same 13 test functions 

showed that the ITSO algorithm has a faster convergence 

speed and better performance as compared to the TSO and 
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the HHO algorithms on about 84.6% of the 13 benchmark 

functions. A final test on a typical engineering design 

problem, that is the pressure vessel design problem 

showed a better performance in the benefit of the ITSO 

algorithm with the best cost value of 5880.9471 compared 

to those of the TSO and the HHO that had 5885.3327 and 

6393.0927 respectively. With the good performance 

exhibited by the ITSO algorithm in terms of fast 

convergence and better solutions, it is recommended that 

researchers explore the potential of the proposed ITSO 

algorithm in solving optimization problems that require 

fewer iterations and fast convergence. Additional works 

focus on looking into the application of the ITSO 

algorithm in solving engineering optimization problems. 
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