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Abstract – This project focuses on the development of a solar-powered system for water cooling 
and pH monitoring using Peltier thermoelectric technology, specifically tailored for hydroponic 
applications. The system aims to maintain optimal water temperature and pH levels, which are 
critical for plant growth in hydroponics—ideally keeping water temperature below 29°C and pH 
levels between 5.5 and 6.5. The system design involves the integration of solar panels, Peltier 
modules, and sensors to achieve the desired cooling and monitoring functions. Simulation and 
hardware testing were conducted to validate the system's performance. Results showed that the 
system effectively maintained water temperature below 29°C and pH levels between 5.5 and 6.5, 
indicating its potential to support optimal conditions for hydroponic systems, which could 
contribute to improved crop management and resource efficiency. This research highlights the 
feasibility of using solar power as a renewable energy source for agricultural applications and 
demonstrates its potential as a sustainable approach to enhancing farming practices. 
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I. Introduction 

Urban agriculture is the cultivation of plants and 
animals in the urban environment for production of food 
crops. It encompasses several activities including 
neighborhood gardening, rooftop gardening, vertical 
farming, and other advancements for instance 
hydroponics. Some of the advantages of urban farming 
include the availability and consumption of fresh foods, 
enhanced food security alimentary, likelihood of 
interaction and development of communities as well as 
economic chances for growth. However, it also came with 
some issues like space and soil issues and some legislation 
issues that are fundamental. Nevertheless, urban 
agriculture, as an innovative and effective method to fight 
food deserts and improve stewardship in the city, is 
staking its place. [1]. 

Water management plays a strong role in urban 
agriculture, especially given the fact that most urban areas 
are facing water rationing. There are several ways of 
under-reducing water use in urban farming including the 
use of drip irrigation systems and rainwater harvesting. 
Further, instead of the nutrient-soil mix, hydroponics 

employ the use of nutrient-infused water to minimize 
water wastage. All these methods of fighting water usage, 
therefore, allow urban farmers to make necessary insights 
towards developing sustainable urban agriculture. [2]. 

Renewable energy can be considered essential in the 
context of future urban farming. The renewable energy 
generated from solar panels and wind turbines can be used 
to power grow lights, pumps, and other equipment used in 
urban farming operations. Aside from minimizing the 
contribution of urban agriculture as a source of carbon 
emissions, this approach also contributes to lowering the 
high energy costs incurred in controlled environment 
agriculture. Additionally, the employment of renewable 
resources can enhance the ability of urban farming to 
continue operating during energy crises or periods of high 
prices [3]. 

This project aims to design an effective approach for 
managing water tanks in plant cultivation through the 
integration of solar power generation, advanced sensor 
networks, and Peltier thermoelectric technology. In 
hydroponic systems, maintaining optimal water 
temperature and pH levels is critical for healthy plant 
growth. Proper control of these factors ensures efficient 
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Abstract – This paper introduces the Sigmoid-function-based Adaptive Pelican Optimization 
Algorithm (MPOA), an enhanced version of the traditional Pelican Optimization Algorithm (POA) 
aimed at improving the POA's performance. Inspired by the hunting behavior of pelicans, the POA 
features two main strategies: the Exploration phase and the Exploitation phase. The Exploration 
phase involves searching new areas within the solution space, while the Exploitation phase focuses 
on refining the optimal solution space to achieve convergence. However, the Exploitation phase is 
inefficient, leading to slower convergence rates when striving for a global optimum. The MPOA 
incorporates an adaptive inertia weight mechanism that leverages the sigmoid function to balance 
exploration and exploitation throughout the optimization process. This adaptive approach ensures 
an efficient transition between searching for new solution areas and refining existing ones, thereby 
enhancing the overall optimization process. The algorithm was tested using a set of widely 
recognized standard benchmark functions to assess its performance. The results demonstrated that 
the MPOA significantly improved both convergence speed and solution quality compared to the 
original POA. Additionally, the MPOA outperformed other traditional optimization algorithms, 
such as Particle Swarm Optimization (PSO) and Genetic Algorithms (GA), in terms of achieving 
better optimization results. It specifically outperformed the others on 22 out of the 23 functions 
representing a 95.65% success rate. These findings suggest that the proposed MPOA provides an 
efficient optimization approach, leading to faster convergence and higher-quality solutions.    
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I. Introduction 

Optimization algorithms are vital tools in engineering 
and applied sciences for addressing a wide range of 
complex optimization problems [1]. These algorithms 
strive to find the optimal solution from an extensive set of 
possibilities [2]. Metaheuristic optimization has been 
utilized in many optimization problems. Metaheuristic 
approaches, which serve as strategies for global 
optimization, emulate natural processes or social 
behaviors [3]-[4].  

Numerous metaheuristic methods have been inspired by 
nature. For instance, the binary Grey-Wolf Optimization 
(bGWO) is inspired by the fascinating behaviors of grey 
wolves [5], particularly their social hierarchy and hunting 
techniques, the Butterfly Optimization Algorithm (BOA) 
draws inspiration from the remarkable food foraging 

behavior of butterflies [6], Ant-Lion Optimization (ALO) 
draws inspiration from the ingenious hunting strategy of 
antlion larvae [7], where these larvae create sand pits to 
trap ants, demonstrating a sophisticated method of 
predation. Artificial-Bee Colony (ABC) is based on the 
foraging behavior of honey bees, which efficiently search 
for food sources using a complex communication system 
involving the waggle dance [8]. Satin-Bowerbird 
Optimization (SBO) mimics the unique mating behavior 
of male Satin Bowerbirds, known for building elaborate 
structures, or bowers, to attract females [9]. The Crow-
Search Algorithm (CSA) is inspired by the intelligent and 
social characteristics of crows, particularly their 
remarkable memory and ability to use tools [10]. Pelican 
Optimization Algorithm (POA) is inspired by the foraging 
and hunting strategies of pelicans, especially their 
cooperative behavior and unique methods of catching fish, 
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such as synchronized diving [5]. Finally, Particle Swarm 
Optimization (PSO) is derived from the social behavior 
observed in bird flocking and fish schooling, where 
individuals follow simple rules based on the behavior of 
their neighbors to achieve collective movement [2].  

Among these various optimization algorithms, the 
Pelican Optimization Algorithm (POA) stands out for its 
simplicity and effectiveness in solving optimization 
problems [11]. Inspired by the collaboration and 
competitive hunting behavior of pelicans to catch fish, 
POA simulates the cooperative and competitive strategies 
pelicans use to catch prey, translating this behavior into a 
metaheuristic optimization framework [12]. To optimize 
their catch, Pelicans use special hunting techniques that 
involve individual and group strategies. For fish hunting, 
Pelicans form semicircular formations which compels the 
fish to move towards the shore making them easier to 
catch. This coordinated effort improves the group's 
success rate, while individual pelicans compete for the 
best catch. This combination of cooperation and 
competition is key to the success of POA, which uses 
natural behaviors to find optimal solutions in complex 
search spaces.  

In the context of POA, several studies have highlighted 
its potential and limitations [16]. The original POA 
inspired by the collaborative and competitive hunting 
strategies of pelicans is effective in the exploration phase, 
where pelicans (candidate solutions) spread out and search 
the solution space [13]. However, the exploitation phase, 
which focuses on refining and converging to the optimal 
solution, is less efficient, leading to slower convergence 
rates in achieving high-quality solutions [14]. This aspect 
shows the need for researchers to enhance the algorithm's 
performance by balancing the exploration and exploitation 
phases effectively.  

Similar drawbacks have been addressed in other 
algorithms using adaptive weights mechanisms. For 
instance, adaptive inertia weights in PSO and adaptive 
mutation rates in GAs have shown promising results [15]. 
However, there has been limited focus on enhancing the 
POA's exploitation phase through adaptive mechanisms. 
This study aims to fill this gap by introducing a sigmoid-
function-based adaptive inertia weight in the POA. This 
creates the Sigmoid-function-based Adaptive Pelican 
Optimization Algorithm (MPOA), which uses a dynamic 
approach to address these challenges and improve the 
overall performance [16]. 

The primary aim of this research is to assess the impact 
of the Sigmoid-function-based Adaptive strategy on the 
POA's performance using well-known twenty-three 
standard benchmark test functions [12]. The study seeks 
to prove that incorporating an adaptive sigmoid-function-
based inertia weight can enhance the POA's convergence 
speed and solution quality in solving complex 
optimization problems. 

The structure of the rest of the paper is as follows: 
Section II explains the original Pelican Optimization 

Algorithm (POA) and its key components. Section III 
introduces the new Sigmoid-function-based Adaptive 
Pelican Optimization Algorithm (MPOA) and the 
reasoning behind its development. Section IV outlines the 
experimental setup and the testing process for the MPOA. 
Section V presents the results and discusses the outcomes. 
Finally, Section VI concludes the paper and suggests 
future research directions. 

II. The Original Pelican Optimization 
Algorithm (POA) 

The Pelican Optimization Algorithm (POA) is a 
metaheuristic optimizer inspired by pelican behavior. It is 
based on swarm intelligence, where the algorithm mimics 
the collaborative and competitive foraging behaviors of 
pelicans. In this system, each agent within the swarm 
shares communal knowledge to enhance their search 
efficiency and effectiveness. By emulating pelicans' 
natural strategies, POA optimizes the search process, 
making it a powerful tool for solving complex 
optimization problems. This approach leverages the 
strength of collective intelligence and adaptive behavior to 
achieve superior performance in various optimization 
tasks. Similar to Particle Swarm Optimization (PSO) [15], 
which models birds flying together in search of food, POA 
utilizes the group dynamics of pelicans hunting for prey to 
solve complex optimization problems effectively [12]. 

The Pelican Optimization Algorithm (POA) utilizes 
pelicans as primary elements in its population, with each 
pelican representing a potential solution. These pelicans 
propose values for the optimization variables based on 
their positions within the search space [17]. Initially, the 
pelicans are assigned random values within the problem's 
defined lower and upper bounds, as outlined in (1). This 
random assignment ensures a diverse set of solutions from 
the start, allowing the algorithm to effectively explore the 
search space. As the algorithm progresses, the pelicans 
continuously adjust their values in pursuit of the optimal 
solution. They do this by evaluating their current positions 
and updating them according to the optimization criteria. 
This iterative process enables the pelicans to gradually 
converge toward the best possible solution by refining 
their positions based on the feedback from the 
optimization process. Through this method, POA balances 
exploration and exploitation, leveraging the pelicans' 
movements to efficiently navigate the search space and 
identify optimal solutions. 

 
𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑖𝑖 + (𝑢𝑢𝑖𝑖 − 𝑙𝑙𝑖𝑖). 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,    𝑖𝑖 = 1,2, … , 𝑁𝑁    𝑗𝑗 =

1,2, … , 𝑚𝑚     (1) 
 

where; 𝑥𝑥𝑖𝑖𝑖𝑖 represents the value of the jth variable specified 
by the ith candidate solution. N denotes the population 
size, while m is the number of problem variables. 𝑙𝑙𝑖𝑖  and 𝑢𝑢𝑖𝑖  
represent the lower and upper bounds of the search 
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interval respectively, and rand is a randomly determined 
value within the interval [0, 1]. 

The POA algorithm emulates pelicans' hunting 
behavior to update candidate solutions. It replicates their 
strategies through a two-stage process, where the pelicans' 
attack and prey capture methods are used to refine and 
optimize potential solutions, improving the algorithm's 
effectiveness and efficiency. These two-stage processes 
are the Exploration Phase and the Exploitation Phase for 
searching for new possible solutions and refining already 
gotten solutions respectively for efficient execution. The 
two stages are further elaborated as follows: 

Exploration Phase: 
During the first phase, pelicans advance towards their 

prey once they have detected its position. The 
unpredictable nature of the prey's location significantly 
enhances the exploration capabilities of the Pelican 
Optimization Algorithm (POA) [12]. By emulating the 
pelican's strategy in approaching its prey, an exploration 
update operator is formulated. This operator, as detailed in 
(2), leverages the pelican's movement strategy to improve 
the algorithm's ability to explore the solution space more 
effectively. This ensures a more thorough search, 
potentially leading to better optimization results.  

The randomness in the prey's positioning introduces a 
crucial element of variability, which helps in avoiding 
local optima. This variability is essential for achieving a 
comprehensive exploration of the solution space, thereby 
enhancing the algorithm's overall performance. By 
incorporating the pelican's natural hunting behavior, the 
algorithm gains a robust mechanism for exploration, 
which is key to its effectiveness in finding optimal 
solutions. 

 

𝑥𝑥𝑖𝑖𝑖𝑖
𝑃𝑃1 = {𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. (𝑝𝑝𝑖𝑖 − 𝐼𝐼. 𝑥𝑥𝑖𝑖𝑖𝑖),     𝐹𝐹𝑝𝑝 < 𝐹𝐹𝑖𝑖

𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑖𝑖),              𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒    (2) 

 
where; 𝑥𝑥𝑖𝑖𝑖𝑖

𝑃𝑃1 represents the updated status of the ith pelican 
in the jth dimension during the exploration phase. 𝐼𝐼 is a 
random integer of either 1 or 2, 𝑝𝑝𝑖𝑖  is the location of the 
prey in the jth dimension, and 𝐹𝐹𝑝𝑝 is its objective function 
value. The exploration phase keeps a record of the best 
pelican using (3) as an updated technique. 

 

𝑋𝑋𝑖𝑖 = {𝑋𝑋𝑖𝑖
𝑃𝑃1 ,         𝐹𝐹𝑖𝑖

𝑃𝑃1 < 𝐹𝐹𝑖𝑖
𝑋𝑋𝑖𝑖 ,                    𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                (3) 

 
where; 𝑋𝑋𝑖𝑖

𝑃𝑃1 represents the new status of the pelican in the 
ith dimension, and 𝐹𝐹𝑖𝑖

𝑃𝑃1 represents its objective function 
value based on the exploration phase. 𝑋𝑋𝑖𝑖 is the present 
status of the pelican in the ith dimension, while 𝐹𝐹𝑖𝑖 denotes 
its objective function value. 
 
 

Exploitation Phase:  
Pelicans enhance their fishing efficiency by spreading 

their wings on the water's surface during the exploitation 
phase, lifting fish into their throat pouches. This technique 
boosts the algorithm's exploitation capability, leading to 
superior solutions within the hunting zone [12]. The 
mathematical modeling of the exploitation phase update 
operator, as shown in (4), is inspired by this pelican 
behavior of spreading wings on the water surface to 
extract fish. This analogy illustrates how the algorithm 
mimics pelicans' method of increasing their catch rate, 
ultimately improving convergence to optimal solutions. 
The pelicans' wing-spreading action serves as a biological 
metaphor for the algorithm's strategy, emphasizing the 
importance of effective exploitation in achieving better 
results.  

By drawing from the pelicans' natural hunting 
techniques, the algorithm can more efficiently navigate 
the solution space, ensuring a higher likelihood of 
identifying the best possible outcomes. 

 
𝑥𝑥𝑖𝑖𝑖𝑖

𝑃𝑃2 = 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑅𝑅. (1 − 𝑡𝑡
𝑇𝑇) . (2. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1). 𝑥𝑥𝑖𝑖𝑖𝑖     (4) 

 
where; 𝑥𝑥𝑖𝑖𝑖𝑖

𝑃𝑃2 represents the new status of the ith pelican in 
the jth dimension, R is a constant with a value of 0.2, and 
t and T represent the iteration count and the maximum 
number of iterations. The exploitation process has the 
same updated mechanism as the exploration phase as 
shown in (5). 

 

𝑋𝑋𝑖𝑖 = {𝑋𝑋𝑖𝑖
𝑃𝑃2 ,         𝐹𝐹𝑖𝑖

𝑃𝑃2 < 𝐹𝐹𝑖𝑖
𝑋𝑋𝑖𝑖 ,                    𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                (5) 

 
where; 𝑋𝑋𝑖𝑖

𝑃𝑃2 is the new status of the pelican in the ith 
dimension, and 𝐹𝐹𝑖𝑖

𝑃𝑃2 is its objective function value based 
on the exploitation phase. 

The implementation process of the POA is 
systematically presented in the flowchart in Fig. 1. 

III. Proposed Modification with Sigmoid-
function-based Adaptive (SA) Inertia 

Weight (⍵⍵) 
Like most optimization algorithms, no single algorithm 

is capable of effectively solving all optimization 
problems. Each algorithm possesses distinct weaknesses 
or limitations that necessitate various modifications or 
enhancements to boost its performance in solving 
optimization challenges. POA is among these 
optimization algorithms and is recognized for its strong 
exploration capabilities. Nevertheless, the POA’s 
exploitation phase struggles with a slow search ability 
when it comes to achieving global optimal solutions [12].  
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Fig. 1. Implementation Flowchart of POA 

 
The update function of POA is highly dependent on 

several factors: the iteration count, the initial value 
assigned to the pelican, and the maximum number of 
iterations. This dependency can lead to inefficiencies in 
the exploitation process for certain optimization 
applications [5]. As a result, while POA demonstrates 
notable potential in exploring the solution space, its ability 
to refine and exploit these solutions to achieve the best 
possible outcome is hindered. Moreover, the limited 

nature of the POA to adapt to changing conditions makes 
it inefficient to employ for different purposes.  

Addressing these specific weaknesses through targeted 
modifications could significantly enhance the overall 
efficiency and effectiveness of the POA, enabling it to 
perform better across a wider range of optimization 
problems. Such enhancements not only aim to improve the 
convergence speed but also seek to enhance the overall 
quality of solutions obtained. Therefore, continuous 
efforts to refine and improve the POA are essential for 
maximizing its utility in diverse optimization problems. In 
particular, incorporating advanced adaptive mechanisms 
can provide the necessary flexibility and robustness 
required for complex optimization tasks.  

In this work, a sigmoid-function-based adaptive inertia 
weight (⍵) [15] is introduced in the exploitation update 
phase to augment the poor exploitation capability of the 
POA as shown in Eqn. (6). This innovative approach 
leverages the mathematical properties of the sigmoid 
function to dynamically adjust the inertia weight, 
facilitating a more balanced and effective search strategy 
throughout the optimization process.  

 
𝑥𝑥𝑖𝑖𝑖𝑖

𝑃𝑃2 = ⍵𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑅𝑅. (1 − 𝑡𝑡
𝑇𝑇) . (2. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 1). 𝑥𝑥𝑖𝑖𝑖𝑖    (6) 

 
where,   represents the value of the inertia weight 
calculated using the sigmoid function expressed in Eqn. 
(7) below. 
 

𝜔𝜔𝑘𝑘 =  𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 − (𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚−𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚)
(1+𝑒𝑒3.4−0.7×𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼))             (7) 

 
where: 𝜔𝜔𝑘𝑘 is the inertia weight at iteration k, 𝜔𝜔𝑚𝑚𝑖𝑖𝑚𝑚  and 
𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚  are the minimum and maximum range of the inertia 
weights, respectively. Iter represents the iterations 
counter. 

The implementation of the proposed sigmoid-function-
based adaptive pelican optimization algorithm in this work 
is by modifying (4) at the exploitation phase of the original 
POA into (6), and then retaining the rest of the 
implementation as shown in Fig. 2. 

 
Testing Proposed MPOA Algorithm  
To establish the improvement of the proposed 

modification on the POA, it has been tested on the same 
standard benchmark test functions used in reference [12], 
and the simulation results compared to those of the 
original POA, PSO, and GA. 

Using MATLAB R2018a software, the proposed 
MPOA was coded and simulation tests on the same 
twenty-three (23) benchmark functions used in the 
original POA [11] with parameters as in Table I. Refer to 
Appendix A in [11] for the details of the benchmark 
functions. Thirty (30) simulations were repeated on each 
benchmark function with a thousand iterations each. The 
performances were compared with those of the original 
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POA, PSO, and GA reported in the literature [11] based 
on four statistical indicators; the mean, the median, the 
standard deviation, and the best optimal solution. The 
outcome is reported in the next section. 

 

 
Fig. 2. Implementation Flowchart of MPOA 

 
TABLE I 

PARAMETERS SETTINGS FOR SIMULATION 
Parameter Value 

Population Size 30 
Maximum Iteration 1000 

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚  0.1 
𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚  1.0 

IV. Results and Discussion 
This section details the simulation results comparing 

the proposed modified Pelican Optimization Algorithm 
(MPOA) with the original Pelican Optimization 
Algorithm (POA), Particle Swarm Optimization (PSO), 
and Genetic Algorithm (GA). The performance metrics 
are summarized in Table II, where the best outcomes 
among the four algorithms are highlighted in bold. 

From the simulation results in Table II, it is evident that 
the MPOA demonstrates superior performance on nearly 
all of the 23 benchmark functions. However, there is an 
exception with function F7, where the original POA 
outperforms the other algorithms regarding mean value, 
median value, and standard deviation. Despite this, the 
MPOA still managed to produce the best single solution 
for the F7 function. 

These findings suggest that the MPOA generally 
enhances performance across a wide range of benchmark 
functions compared to the original POA, PSO, and GA. 
The improved performance of the MPOA is particularly 
notable in most cases, although it is important to 
acknowledge that there are instances, such as with the F7 
function, where the original POA may still hold an 
advantage in terms of consistency in mean, median, and 
standard deviation values. Nonetheless, the MPOA's 
ability to generate the best individual solution for F7 
indicates its potential for optimization tasks. 

Specifically, the Modified Pelican Optimization 
Algorithm (MPOA) surpassed the original Pelican 
Optimization Algorithm (POA), Particle Swarm 
Optimization (PSO), and Genetic Algorithm (GA) on 
benchmark functions F1, F2, F3, F4, F5, F8, F12, F13, and 
F17, totaling 9 out of the 23 functions tested. Additionally, 
the MPOA delivered competitive results on F6, F9, F10, 
F11, F14, F15, F16, F18, F19, F20, F21, F22, and F23 
when compared to the original POA, but it still 
outperformed PSO and GA on these functions. This 
accounts for 13 out of the 23 functions considered. 

Overall, the MPOA showed excellent performance on 
22 of the 23 benchmark functions, which translates to a 
95.65% success rate relative to the other algorithms. These 
results indicate that the MPOA has significantly improved 
performance in optimization tasks when compared to the 
original POA, PSO, and GA. 

To further illustrate this, the convergence behaviors of 
the proposed MPOA and the original POA are compared 
across the 23 benchmark functions in the following Fig. 3 
for F1 to F23. The figures highlight how the MPOA not 
only reaches optimal solutions more efficiently but also 
maintains a high level of consistency across different types 
of optimization problems. This comprehensive analysis 
confirms that the MPOA is a robust and effective 
algorithm, showcasing its enhanced capability in handling 
diverse and complex optimization tasks. 
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(a) Convergence behaviors for F1 

 
(b) Convergence behaviors for F2 

 
(c) Convergence behaviors for F3 

 
(d) Convergence behaviors for F4 

 
(e) Convergence behaviors for F5 

 
(f) Convergence behaviors for F6 

 
(g) Convergence behaviors for F7 

 
(h) Convergence behaviors for F8 
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(i) Convergence behaviors for F9 

 
(j) Convergence behaviors for F10 

 
(k) Convergence behaviors for F11 

 
(l) Convergence behaviors for F12 

 
(m) Convergence behaviors for F13 

 
(n) Convergence behaviors for F14 

 
(o) Convergence behaviors for F15 

 
(p) Convergence behaviors for F16 
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(q) Convergence behaviors for F17 

 
(r) Convergence behaviors for F18 

 
(s) Convergence behaviors for F19 

 
(t) Convergence behaviors for F20 

 
(u) Convergence behaviors for F21 

 
(v) Convergence behaviors for F22 

 
(w) Convergence behaviors for F23 

 
Fig. 3. Comparison of convergence behaviours between MPOA and 

POA for 23 benchmark functions 
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The convergence characteristics depicted in Fig. 3 for 
F1 to F23 shows the performance of MPOA and POA. The 
green line represents the convergence behavior of the 
MPOA across different test functions, while the blue line 
depicts the original POA's performance. The MPOA 
exhibits superior convergence compared to the POA, 
underscoring the enhancements achieved through the 
proposed modifications. This improved performance is 
consistently observed across all test functions, affirming 
the effectiveness of the modifications made to the original 
POA. Thus, the MPOA's enhanced convergence 
characteristics highlight the significant advancements 
introduced by the proposed changes. 

The MPOA showed significantly faster and more 
efficient convergence to optimal solutions than the 
original POA on test functions F1, F2, F3, F4, F6, F7, F8, 
F9, and F11, with a markedly greater difference. This 
rapid convergence is crucial for practical applications 
requiring high computational efficiency, such as 
automated control systems. For functions F10, F12, and 
F20, the MPOA achieved substantially better convergence 
performance compared to the POA, resulting in superior 
solutions, although the differences were not as 
pronounced as in the earlier cases. In the remaining 
scenarios, the MPOA and POA exhibited very competitive 
convergence characteristics, with the MPOA narrowly 
outperforming the POA, leading to better final 
convergence solutions. These results highlight the 
MPOA's enhanced efficiency and effectiveness, making it 
a significant improvement over the original POA for 
applications demanding rapid and reliable optimization.  

The consistent achievement of better or competitive 
convergence by the MPOA underscores its potential for 
practical implementations where optimization speed and 
solution quality are critical. Overall, the MPOA's ability 
to quickly converge to superior solutions emphasizes its 
value in real-world applications requiring high 
computational time efficiency. 

The findings from the simulations and comprehensive 
statistical analysis strongly validate that incorporating the 
sigmoid-function-based adaptive inertia weight has 
substantially enhanced the performance of the POA. This 
innovative adaptive mechanism empowers the algorithm 
to dynamically and intelligently modify its search strategy 
in real-time, leading to a remarkable improvement in both 
the speed of convergence and the quality of the solutions 
obtained. By allowing for this dynamic adjustment, the 
algorithm becomes more efficient and effective, 
optimizing its search process and yielding superior results 
in a variety of scenarios. This enhancement demonstrates 
a profound advancement in the POA's capabilities, making 
it a robust and powerful tool for complex optimization 
tasks. The substantial improvements observed underscore 
the critical role of adaptive inertia weight in advancing 
state-of-the-art optimization algorithms, highlighting its 

potential for widespread application in fields that require 
high precision and efficiency. 

V. Conclusion 
This paper presents the Sigmoid-function-based 

Adaptive Pelican Optimization Algorithm (MPOA), an 
improved version of the traditional Pelican Optimization 
Algorithm (POA) designed to enhance its performance. 
The POA includes two main strategies: the Exploration 
phase and the Exploitation phase. The Exploration phase 
involves searching new areas within the solution space, 
while the Exploitation phase focuses on refining the 
optimal solution space to achieve convergence. However, 
the Exploitation phase tends to be less efficient, resulting 
in slower convergence rates when seeking a global 
optimum. The MPOA incorporates an adaptive inertia 
weight mechanism that uses the sigmoid function to 
dynamically balance exploration and exploitation 
throughout the optimization process to address this issue. 
This adaptive approach ensures a more efficient transition 
between exploring new solution areas and refining 
existing ones, thereby enhancing the overall optimization 
process. The algorithm was tested using a set of widely 
recognized standard benchmark functions to evaluate its 
performance. The results on the 23 functions showed that 
the MPOA significantly improved both convergence 
speed and solution quality compared to the original POA 
by producing good performance on 22 out of the 23 
representing 95.65%. Additionally, the MPOA 
outperformed other traditional optimization algorithms, 
such as Particle Swarm Optimization (PSO) and Genetic 
Algorithms (GA), in terms of achieving superior 
optimization results.  

This demonstrates the MPOA’s capability to handle a 
wide range of optimization challenges effectively. These 
findings indicate that the adaptive mechanism introduced 
in the MPOA provides a more balanced and efficient 
approach to optimization, leading to faster convergence 
and higher-quality solutions. Overall, the development of 
the MPOA represents a significant advancement in 
optimization algorithms, offering an effective tool for 
tackling complex optimization problems with enhanced 
efficiency. The successful application of the MPOA to 
standard benchmark functions highlights its potential for 
broader applications in various optimization scenarios 
such as the optimal power flow problem. 
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TABLE II  
RESULTS COMPARISON OF BENCHMARK FUNCTIONS 

FUNCTION STATISTICAL 
INDICATORS GA PSO POA MPOA 

F1 
Sphere 

MEAN 
MEDIAN 
STD 
BEST 

11.6208 
11.04546 

2.6142E-11 
5.593489 

4.1728E-04 
9.920E-7 

3.6142E-21 
2.00E-10 

2.87E-258 

8.2E-248 

4.51E-514 

7.61E-264 

0.000E+00 
0.000E+00 
0.000E+00 
0.000E+00 

F2 
Schwefel 
2.22 

MEAN 
MEDIAN 
STD 
BEST 

4.6942 
2.463873 

5.4318E-14 
1.591137 

0.3114 
0.130114 

4.4667E-16 
0.001741 

1.43E-128 

7.1E-123 

2.90E-129 

2.61E-131 

0.000E+00 
0.000E+00 
0.000E+00 
0.000E+00 

F3 
Schwefel 1.2 

MEAN 
MEDIAN 
STD 
BEST 

1361.2743 
1510.715 

6.6096E-12 
1014.689 

588.3012 
54.15445 

9.7117E-12 
1.614937 

1.88E-256 

8.2E-244 

5.16E-614 

7.36E-262 

0.000E+00 
0.000E+00 
0.000E+00 
0.000E+00 

F4 
Schwefel 
2.21 

MEAN 
MEDIAN 
STD 
BEST 

2.0396 
2.09854 

4.3321E-14 
1.389849 

4.3693 
3.260672 

4.2019E-15 
1.60441 

2.36E-133 

2.8E-123 

8.37E-134 

6.08E-138 

0.000E+00 
0.000E+00 
0.000E+00 
0.000E+00 

F5 
Rosenbrock 

MEAN 
MEDIAN 
STD 
BEST 

308.4196 
279.5174 

3.0412E-12 
160.5013 

50.5412 
28.69298 

1.8529E-13 
3.647051 

2.71253E+01 
2.8707E+01 

1.91E-15 

2.62052E+01 

1.5585E-03 

6.1201E-05 

5.4197E-03 

1.3053E-05 

F6 
Quadratic 

MEAN 
MEDIAN 
STD 
BEST 

15.6231 
13.50 

7.3160E-14 
6.00 

20.2691 
19.00 
2.6314 

5.00 

0.000E+00 
0.000E+00 
0.000E+00 
0.000E+00 

0.000E+00 
0.000E+00 
0.000E+00 
0.000E+00 

F7 
Quartic 

MEAN 
MEDIAN 
STD 
BEST 

8.6517E-2 
0.005365 

8.9206E-17 
0.002111 

0.3218 
0.107872 

3.4333E-16 
0.029593 

9.370E-06 

4.860E-05 

8.030E-20 

7.050E-07 

9.1874E-05 

7.1340E-05 

8.0161E-05 

0.000E+00 

F8 
Michalewicz 

MEAN 
MEDIAN 
STD 
BEST 

−8210.3415 
−8117.66 
833.5126 
−9717.68 

−6899.9556 
−7098.95 
625.4286 
−8501.44 

−9.3367304E+03 
−8.50555E+03 

2.640E-12 

−9.85021E+03 

-1.1941E+04 
-1.256948E+04 
2.81062E+03 
-1.25694E+04 

F9 
Rastrigin 

MEAN 
MEDIAN 
STD 
BEST 

62.1441 
61.67858 

2.1637E-13 
36.86623 

57.0503 
55.22468 

6.0013E-14 
27.85883 

0.000E+00 
0.000E+00 
0.000E+00 
0.000E+00 

0.000E+00 
0.000E+00 
0.000E+00 
0.000E+00 

F10 
Ackley 

MEAN 
MEDIAN 
STD 
BEST 

3.8134 
3.120322 

6.8972E-15 
2.757203 

2.6304 
2.170083 

6.9631E-15 
1.155151 

8.88E-16 

8.88E-16 

0.000E+00 
8.88E-16 

8.88E-16 

8.88E-16 

0.000E+00 
8.88E-16 

F11 
Griewank 

MEAN 
MEDIAN 
STD 
BEST 

1.1973 
1.227231 

4.8521E-15 
1.140471 

0.0364 
0.029473 

2.6398E-17 
7.29E-09 

0.000E+00 
0.000E+00 
0.000E+00 
0.000E+00 

0.000E+00 
0.000E+00 
0.000E+00 
0.000E+00 

F12 
Penalized 

MEAN 
MEDIAN 
STD 
BEST 

0.0469 
0.04179 

1.7456E-14 
0.018364 

0.4792 
0.1556 

9.3071E-15 
0.000145 

5.83E-02 
1.464E-01 
2.73E-16 

4.52E-02 

1.4389E-02 
1.9981E-02 
25401E-01 
1.2133E-05 

F13 
Penalized 2 

MEAN 
MEDIAN 
STD 
BEST 

1.2106 
1.218053 

3.5630E-15 
0.49809 

0.5156 
0.043997 

4.1427E-16 
9.99E-07 

1.42866E+00 
2.976773E+00 

2.83E-15 

1.428663E+00 

4.1196E-08 
1.2697E-08 
5.856E-08 
2.0793E-08 

F14 
Vincent 

MEAN 
MEDIAN 
STD 
BEST 

0.9969 
0.998018 

6.3124E-14 
0.998004 

2.3909 
0.998004 

8.0126E-15 
0.998004 

9.980E-01 
9.980E-01 
0.000E+00 
9.980E-01 

9.980E-01 
9.980E-01 
2.2316E-01 
9.980E-01 

F15 
Kowalik 

MEAN 
MEDIAN 
STD 
BEST 

0.0042 
0.002074 

1.6317E-17 
0.000775 

0.0528 
0.000307 

2.6159E-18 
0.000307 

3.000E-04 
3.000E-04 
1.21E-19 

3.000E-04 

3.000E-04 
3.000E-04 
2.24E-20 

3.000E-04 

F16 
Michalewicz 

MEAN 
MEDIAN 
STD 
BEST 

-1.0307 
-1.0309 

9.1449E-15 
-1.0316 

-1.0312 
-1.0311 

3.2496E-15 
-1.0316 

-1.0316E+00 
-1.03163E+00 

1.93E-18 
-1.03163E+00 

-1.0316E+00 
-1.03163E+00 

2.3068E-21 
-1.0316E+00 

F17 
Schaffer 2 

MEAN 
MEDIAN 
STD 

0.4401 
0.4016 

1.4109E-16 

0.7951 
0.6521 

3.9801E-5 

3.978E-01 
3.978E-01 
0.000E+00 

3.9799E-01 
3.9789E-01 
8.897E-02 
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BEST 0.3978 0.3978 3.978E-01 3.979E-01 

F18 
Langerman 

MEAN 
MEDIAN 
STD 
BEST 

4.3601 
3.7581 

2.6108E-15 
3.0002 

3.0010 
3.0005 

1.1041E-14 
3.0E+00 

3.000E+00 
3.000E+00 
1.090E-16 
3.000E+00 

3.0E+00 
3.0E+00 

6.7082E-21 
3.0E+00 

F19 
Deb’s 

MEAN 
MEDIAN 
STD 
BEST 

-3.8519 
-3.8413 

3.6015E-14 
-3.86278 

-3.8627 
-3.8560 

7.0114E-14 
-3.8627 

-3.86278E+00 
-3.8627E+00 

6.45E-01 
-3.8627E+00 

-3.6696E+00 
-3.8628E+00 
8.6374E-01 
-3.862E+00 

F20 
Hartmann 
(6-Dim) 

MEAN 
MEDIAN 
STD 
BEST 

-2.8301 
-2.96828 

3.7124E-15 
-3.31342 

-3.2626 
-3.2160 

3.4567E-15 
-3.322 

-3.3220E+00 
-3.322E+00 
1.970E-16 

-3.322E+00 

-3.322E+00 
-3.322E+00 
2.570E-21 

-3.322E+00 

F21 
Hartmann 
(4-Dim) 

MEAN 
MEDIAN 
STD 
BEST 

-4.2593 
-4.16238 

2.3631E-08 
-7.82781 

-5.4236 
-5.10077 

6.3014E-09 
-8.0267 

-1.0153E+01 
-1.01532E+01 

1.930E-16 

-1.01532E+01 

-1.0153E+01 
-1.01532E+01 

5.13E-23 

-1.01532E+01 

F22 
Shekel’s 

Foxholes 

MEAN 
MEDIAN 
STD 
BEST 

-5.1183 
-5.0296 

6.1697E-14 
-9.1106 

-7.6351 
-10.4020 

5.0610E-14 
-10.4024 

-1.04029E+01 
-1.04029E+01 

3.57E-01 
-1.04029E+01 

-1.04029E+01 
-1.04029E+01 

2.420E-03 
-1.04029E+01 

F23 
Shekel’s 

Family 

MEAN 
MEDIAN 
STD 
BEST 

-6.5675 
-6.5629 

5.6014E-14 
-10.2227 

-6.1653 
-4.50554 

5.3917E-15 
-10.5364 

-1.0536E+01 
-1.05364E+01 

3.970E-16 
-1.05364E+01 

-1.0536E+01 
-1.05364E+01 

1.950E-21 
-1.05364E+01 
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