

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License, permitting copy

and redistribution of the material and adaptation for commercial and uncommercial use.

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 7, No. 2, October 2024

Sigmoid-Function-Based Adaptive Pelican Optimization Algorithm for

Global Optimization

A. F. Seini Yussif1*, S. Adjei2, B. E. Wilson3
1*Department of Electrical and Electronics Engineering, University for Development Studies, Tamale, Ghana

2Department of Electrical and Electronics Engineering, Kwame Nkrumah University of Science and Technology,

Kumasi, Ghana
3Department of Computer and Electrical Engineering, University of Energy and Natural Resources, Sunyani, Ghana

*corresponding author’s email: seini.coe@gmail.com

Abstract – This paper introduces the Sigmoid-function-based Adaptive Pelican Optimization

Algorithm (MPOA), an enhanced version of the traditional Pelican Optimization Algorithm (POA)

aimed at improving the POA's performance. Inspired by the hunting behavior of pelicans, the POA

features two main strategies: the Exploration phase and the Exploitation phase. The Exploration

phase involves searching new areas within the solution space, while the Exploitation phase focuses

on refining the optimal solution space to achieve convergence. However, the Exploitation phase is

inefficient, leading to slower convergence rates when striving for a global optimum. The MPOA

incorporates an adaptive inertia weight mechanism that leverages the sigmoid function to balance

exploration and exploitation throughout the optimization process. This adaptive approach ensures

an efficient transition between searching for new solution areas and refining existing ones, thereby

enhancing the overall optimization process. The algorithm was tested using a set of widely

recognized standard benchmark functions to assess its performance. The results demonstrated that

the MPOA significantly improved both convergence speed and solution quality compared to the

original POA. Additionally, the MPOA outperformed other traditional optimization algorithms,

such as Particle Swarm Optimization (PSO) and Genetic Algorithms (GA), in terms of achieving

better optimization results. It specifically outperformed the others on 22 out of the 23 functions

representing a 95.65% success rate. These findings suggest that the proposed MPOA provides an

efficient optimization approach, leading to faster convergence and higher-quality solutions.

Keywords: Algorithm, Adaptive, Metaheuristic, Nature-Inspired, Pelican Optimization Algorithm

Article History
Received 24 July 2024

Received in revised form 20 August 2024

Accepted 28 August 2024

I. Introduction

Optimization algorithms are vital tools in engineering

and applied sciences for addressing a wide range of

complex optimization problems [1]. These algorithms

strive to find the optimal solution from an extensive set of

possibilities [2]. Metaheuristic optimization has been

utilized in many optimization problems. Metaheuristic

approaches, which serve as strategies for global

optimization, emulate natural processes or social

behaviors [3]-[4].

Numerous metaheuristic methods have been inspired by

nature. For instance, the binary Grey-Wolf Optimization

(bGWO) is inspired by the fascinating behaviors of grey

wolves [5], particularly their social hierarchy and hunting

techniques, the Butterfly Optimization Algorithm (BOA)

draws inspiration from the remarkable food foraging

behavior of butterflies [6], Ant-Lion Optimization (ALO)

draws inspiration from the ingenious hunting strategy of

antlion larvae [7], where these larvae create sand pits to

trap ants, demonstrating a sophisticated method of

predation. Artificial-Bee Colony (ABC) is based on the

foraging behavior of honey bees, which efficiently search

for food sources using a complex communication system

involving the waggle dance [8]. Satin-Bowerbird

Optimization (SBO) mimics the unique mating behavior

of male Satin Bowerbirds, known for building elaborate

structures, or bowers, to attract females [9]. The Crow-

Search Algorithm (CSA) is inspired by the intelligent and

social characteristics of crows, particularly their

remarkable memory and ability to use tools [10]. Pelican

Optimization Algorithm (POA) is inspired by the foraging

and hunting strategies of pelicans, especially their

cooperative behavior and unique methods of catching fish,

seini.coe@gmail.com

International Journal of Electrical Engineering and Applied Sciences

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 7, No. 2, October 2024

such as synchronized diving [5]. Finally, Particle Swarm

Optimization (PSO) is derived from the social behavior

observed in bird flocking and fish schooling, where

individuals follow simple rules based on the behavior of

their neighbors to achieve collective movement [2].

Among these various optimization algorithms, the

Pelican Optimization Algorithm (POA) stands out for its

simplicity and effectiveness in solving optimization

problems [11]. Inspired by the collaboration and

competitive hunting behavior of pelicans to catch fish,

POA simulates the cooperative and competitive strategies

pelicans use to catch prey, translating this behavior into a

metaheuristic optimization framework [12]. To optimize

their catch, Pelicans use special hunting techniques that

involve individual and group strategies. For fish hunting,

Pelicans form semicircular formations which compels the

fish to move towards the shore making them easier to

catch. This coordinated effort improves the group's

success rate, while individual pelicans compete for the

best catch. This combination of cooperation and

competition is key to the success of POA, which uses

natural behaviors to find optimal solutions in complex

search spaces.

In the context of POA, several studies have highlighted

its potential and limitations [16]. The original POA

inspired by the collaborative and competitive hunting

strategies of pelicans is effective in the exploration phase,

where pelicans (candidate solutions) spread out and search

the solution space [13]. However, the exploitation phase,

which focuses on refining and converging to the optimal

solution, is less efficient, leading to slower convergence

rates in achieving high-quality solutions [14]. This aspect

shows the need for researchers to enhance the algorithm's

performance by balancing the exploration and exploitation

phases effectively.

Similar drawbacks have been addressed in other

algorithms using adaptive weights mechanisms. For

instance, adaptive inertia weights in PSO and adaptive

mutation rates in GAs have shown promising results [15].

However, there has been limited focus on enhancing the

POA's exploitation phase through adaptive mechanisms.

This study aims to fill this gap by introducing a sigmoid-

function-based adaptive inertia weight in the POA. This

creates the Sigmoid-function-based Adaptive Pelican

Optimization Algorithm (MPOA), which uses a dynamic

approach to address these challenges and improve the

overall performance [16].

The primary aim of this research is to assess the impact

of the Sigmoid-function-based Adaptive strategy on the

POA's performance using well-known twenty-three

standard benchmark test functions [12]. The study seeks

to prove that incorporating an adaptive sigmoid-function-

based inertia weight can enhance the POA's convergence

speed and solution quality in solving complex

optimization problems.

The structure of the rest of the paper is as follows:

Section II explains the original Pelican Optimization

Algorithm (POA) and its key components. Section III

introduces the new Sigmoid-function-based Adaptive

Pelican Optimization Algorithm (MPOA) and the

reasoning behind its development. Section IV outlines the

experimental setup and the testing process for the MPOA.

Section V presents the results and discusses the outcomes.

Finally, Section VI concludes the paper and suggests

future research directions.

II. The Original Pelican Optimization

Algorithm (POA)

The Pelican Optimization Algorithm (POA) is a

metaheuristic optimizer inspired by pelican behavior. It is

based on swarm intelligence, where the algorithm mimics

the collaborative and competitive foraging behaviors of

pelicans. In this system, each agent within the swarm

shares communal knowledge to enhance their search

efficiency and effectiveness. By emulating pelicans'

natural strategies, POA optimizes the search process,

making it a powerful tool for solving complex

optimization problems. This approach leverages the

strength of collective intelligence and adaptive behavior to

achieve superior performance in various optimization

tasks. Similar to Particle Swarm Optimization (PSO) [15],

which models birds flying together in search of food, POA

utilizes the group dynamics of pelicans hunting for prey to

solve complex optimization problems effectively [12].

The Pelican Optimization Algorithm (POA) utilizes

pelicans as primary elements in its population, with each

pelican representing a potential solution. These pelicans

propose values for the optimization variables based on

their positions within the search space [17]. Initially, the

pelicans are assigned random values within the problem's

defined lower and upper bounds, as outlined in (1). This

random assignment ensures a diverse set of solutions from

the start, allowing the algorithm to effectively explore the

search space. As the algorithm progresses, the pelicans

continuously adjust their values in pursuit of the optimal

solution. They do this by evaluating their current positions

and updating them according to the optimization criteria.

This iterative process enables the pelicans to gradually

converge toward the best possible solution by refining

their positions based on the feedback from the

optimization process. Through this method, POA balances

exploration and exploitation, leveraging the pelicans'

movements to efficiently navigate the search space and

identify optimal solutions.

𝑋𝑖𝑗 = 𝑙𝑗 + (𝑢𝑗 − 𝑙𝑗). 𝑟𝑎𝑛𝑑 , 𝑖 = 1,2, … , 𝑁 𝑗 =

1,2, … , 𝑚 (1)

where; 𝑥𝑖𝑗 represents the value of the jth variable specified

by the ith candidate solution. N denotes the population

size, while m is the number of problem variables. 𝑙𝑗 and 𝑢𝑗

represent the lower and upper bounds of the search

Sigmoid-Function-Based Adaptive Pelican Optimization Algorithm for Global Optimization

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 7, No. 2, October 2024

interval respectively, and rand is a randomly determined

value within the interval [0, 1].

The POA algorithm emulates pelicans' hunting

behavior to update candidate solutions. It replicates their

strategies through a two-stage process, where the pelicans'

attack and prey capture methods are used to refine and

optimize potential solutions, improving the algorithm's

effectiveness and efficiency. These two-stage processes

are the Exploration Phase and the Exploitation Phase for

searching for new possible solutions and refining already

gotten solutions respectively for efficient execution. The

two stages are further elaborated as follows:

Exploration Phase:

During the first phase, pelicans advance towards their

prey once they have detected its position. The

unpredictable nature of the prey's location significantly

enhances the exploration capabilities of the Pelican

Optimization Algorithm (POA) [12]. By emulating the

pelican's strategy in approaching its prey, an exploration

update operator is formulated. This operator, as detailed in

(2), leverages the pelican's movement strategy to improve

the algorithm's ability to explore the solution space more

effectively. This ensures a more thorough search,

potentially leading to better optimization results.

The randomness in the prey's positioning introduces a

crucial element of variability, which helps in avoiding

local optima. This variability is essential for achieving a

comprehensive exploration of the solution space, thereby

enhancing the algorithm's overall performance. By

incorporating the pelican's natural hunting behavior, the

algorithm gains a robust mechanism for exploration,

which is key to its effectiveness in finding optimal

solutions.

𝑥𝑖𝑗
𝑃1 = {

𝑥𝑖𝑗 + 𝑟𝑎𝑛𝑑. (𝑝𝑗 − 𝐼. 𝑥𝑖𝑗), 𝐹𝑝 < 𝐹𝑖

𝑥𝑖𝑗 + 𝑟𝑎𝑛𝑑. (𝑥𝑖𝑗 − 𝑝𝑗), 𝑒𝑙𝑠𝑒
 (2)

where; 𝑥𝑖𝑗
𝑃1 represents the updated status of the ith pelican

in the jth dimension during the exploration phase. 𝐼 is a

random integer of either 1 or 2, 𝑝𝑗 is the location of the

prey in the jth dimension, and 𝐹𝑝 is its objective function

value. The exploration phase keeps a record of the best

pelican using (3) as an updated technique.

𝑋𝑖 = {
𝑋𝑖

𝑃1 , 𝐹𝑖
𝑃1 < 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
 (3)

where; 𝑋𝑖
𝑃1 represents the new status of the pelican in the

ith dimension, and 𝐹𝑖
𝑃1 represents its objective function

value based on the exploration phase. 𝑋𝑖 is the present

status of the pelican in the ith dimension, while 𝐹𝑖 denotes

its objective function value.

Exploitation Phase:

Pelicans enhance their fishing efficiency by spreading

their wings on the water's surface during the exploitation

phase, lifting fish into their throat pouches. This technique

boosts the algorithm's exploitation capability, leading to

superior solutions within the hunting zone [12]. The

mathematical modeling of the exploitation phase update

operator, as shown in (4), is inspired by this pelican

behavior of spreading wings on the water surface to

extract fish. This analogy illustrates how the algorithm

mimics pelicans' method of increasing their catch rate,

ultimately improving convergence to optimal solutions.

The pelicans' wing-spreading action serves as a biological

metaphor for the algorithm's strategy, emphasizing the

importance of effective exploitation in achieving better

results.

By drawing from the pelicans' natural hunting

techniques, the algorithm can more efficiently navigate

the solution space, ensuring a higher likelihood of

identifying the best possible outcomes.

𝑥𝑖𝑗
𝑃2 = 𝑥𝑖𝑗 + 𝑅. (1 −

𝑡

𝑇
) . (2. 𝑟𝑎𝑛𝑑 − 1). 𝑥𝑖𝑗 (4)

where; 𝑥𝑖𝑗
𝑃2 represents the new status of the ith pelican in

the jth dimension, R is a constant with a value of 0.2, and

t and T represent the iteration count and the maximum

number of iterations. The exploitation process has the

same updated mechanism as the exploration phase as

shown in (5).

𝑋𝑖 = {
𝑋𝑖

𝑃2 , 𝐹𝑖
𝑃2 < 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
 (5)

where; 𝑋𝑖
𝑃2 is the new status of the pelican in the ith

dimension, and 𝐹𝑖
𝑃2 is its objective function value based

on the exploitation phase.

The implementation process of the POA is

systematically presented in the flowchart in Fig. 1.

III. Proposed Modification with Sigmoid-

function-based Adaptive (SA) Inertia

Weight (⍵)

Like most optimization algorithms, no single algorithm

is capable of effectively solving all optimization

problems. Each algorithm possesses distinct weaknesses

or limitations that necessitate various modifications or

enhancements to boost its performance in solving

optimization challenges. POA is among these

optimization algorithms and is recognized for its strong

exploration capabilities. Nevertheless, the POA’s

exploitation phase struggles with a slow search ability

when it comes to achieving global optimal solutions [12].

International Journal of Electrical Engineering and Applied Sciences

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 7, No. 2, October 2024

Start POA

Input Problem Information

Determine Parameters N and T

Generate Initial Population using (1)

Calculate Objective Function Values

Generate Prey at Random

Calculate Xij
P1 using (2)

j = m?

Update Xi using (3)

Calculate Xij
P2 using (4)

j = m?

Update Xi using (5)

i = N?

Save best candidate solution so far

t = T?

Output best candidate solution

End POA

Yes

Yes

Yes

Yes

j = j+1

j = j+1

t = t+1

i = i+1

No

No

No

No

Fig. 1. Implementation Flowchart of POA

The update function of POA is highly dependent on

several factors: the iteration count, the initial value

assigned to the pelican, and the maximum number of

iterations. This dependency can lead to inefficiencies in

the exploitation process for certain optimization

applications [5]. As a result, while POA demonstrates

notable potential in exploring the solution space, its ability

to refine and exploit these solutions to achieve the best

possible outcome is hindered. Moreover, the limited

nature of the POA to adapt to changing conditions makes

it inefficient to employ for different purposes.

Addressing these specific weaknesses through targeted

modifications could significantly enhance the overall

efficiency and effectiveness of the POA, enabling it to

perform better across a wider range of optimization

problems. Such enhancements not only aim to improve the

convergence speed but also seek to enhance the overall

quality of solutions obtained. Therefore, continuous

efforts to refine and improve the POA are essential for

maximizing its utility in diverse optimization problems. In

particular, incorporating advanced adaptive mechanisms

can provide the necessary flexibility and robustness

required for complex optimization tasks.

In this work, a sigmoid-function-based adaptive inertia

weight (⍵) [15] is introduced in the exploitation update

phase to augment the poor exploitation capability of the

POA as shown in Eqn. (6). This innovative approach

leverages the mathematical properties of the sigmoid

function to dynamically adjust the inertia weight,

facilitating a more balanced and effective search strategy

throughout the optimization process.

𝑥𝑖𝑗
𝑃2 = ⍵𝑥𝑖𝑗 + 𝑅. (1 −

𝑡

𝑇
) . (2. 𝑟𝑎𝑛𝑑 − 1). 𝑥𝑖𝑗 (6)

where,  represents the value of the inertia weight

calculated using the sigmoid function expressed in Eqn.

(7) below.

𝜔𝑘 = 𝜔𝑚𝑎𝑥 −
(𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛)

(1+𝑒3.4−0.7×𝐼𝑡𝑒𝑟))
 (7)

where: 𝜔𝑘 is the inertia weight at iteration k, 𝜔𝑚𝑖𝑛 and

𝜔𝑚𝑎𝑥 are the minimum and maximum range of the inertia

weights, respectively. Iter represents the iterations

counter.

The implementation of the proposed sigmoid-function-

based adaptive pelican optimization algorithm in this work

is by modifying (4) at the exploitation phase of the original

POA into (6), and then retaining the rest of the

implementation as shown in Fig. 2.

Testing Proposed MPOA Algorithm

To establish the improvement of the proposed

modification on the POA, it has been tested on the same

standard benchmark test functions used in reference [12],

and the simulation results compared to those of the

original POA, PSO, and GA.

Using MATLAB R2018a software, the proposed

MPOA was coded and simulation tests on the same

twenty-three (23) benchmark functions used in the

original POA [11] with parameters as in Table I. Refer to

Appendix A in [11] for the details of the benchmark

functions. Thirty (30) simulations were repeated on each

benchmark function with a thousand iterations each. The

performances were compared with those of the original

Sigmoid-Function-Based Adaptive Pelican Optimization Algorithm for Global Optimization

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 7, No. 2, October 2024

POA, PSO, and GA reported in the literature [11] based

on four statistical indicators; the mean, the median, the

standard deviation, and the best optimal solution. The

outcome is reported in the next section.

Start POA

Input Problem Information

Determine Parameters N and T

Generate Initial Population using (1)

Calculate Objective Function Values

Generate Prey at Random

Calculate Xij
P1 using (2)

j = m?

Update Xi using (3)

Calculate Xij
P2 using (6)

j = m?

Update Xi using (5)

i = N?

Save best candidate solution so far

t = T?

Output best candidate solution

End POA

Yes

Yes

Yes

Yes

j = j+1

j = j+1

t = t+1

i = i+1

No

No

No

No

Fig. 2. Implementation Flowchart of MPOA

TABLE I

PARAMETERS SETTINGS FOR SIMULATION
Parameter Value

Population Size 30
Maximum Iteration 1000

𝜔𝑚𝑖𝑛 0.1

𝜔𝑚𝑎𝑥 1.0

IV. Results and Discussion

This section details the simulation results comparing

the proposed modified Pelican Optimization Algorithm

(MPOA) with the original Pelican Optimization

Algorithm (POA), Particle Swarm Optimization (PSO),

and Genetic Algorithm (GA). The performance metrics

are summarized in Table II, where the best outcomes

among the four algorithms are highlighted in bold.

From the simulation results in Table II, it is evident that

the MPOA demonstrates superior performance on nearly

all of the 23 benchmark functions. However, there is an

exception with function F7, where the original POA

outperforms the other algorithms regarding mean value,

median value, and standard deviation. Despite this, the

MPOA still managed to produce the best single solution

for the F7 function.

These findings suggest that the MPOA generally

enhances performance across a wide range of benchmark

functions compared to the original POA, PSO, and GA.

The improved performance of the MPOA is particularly

notable in most cases, although it is important to

acknowledge that there are instances, such as with the F7

function, where the original POA may still hold an

advantage in terms of consistency in mean, median, and

standard deviation values. Nonetheless, the MPOA's

ability to generate the best individual solution for F7

indicates its potential for optimization tasks.

Specifically, the Modified Pelican Optimization

Algorithm (MPOA) surpassed the original Pelican

Optimization Algorithm (POA), Particle Swarm

Optimization (PSO), and Genetic Algorithm (GA) on

benchmark functions F1, F2, F3, F4, F5, F8, F12, F13, and

F17, totaling 9 out of the 23 functions tested. Additionally,

the MPOA delivered competitive results on F6, F9, F10,

F11, F14, F15, F16, F18, F19, F20, F21, F22, and F23

when compared to the original POA, but it still

outperformed PSO and GA on these functions. This

accounts for 13 out of the 23 functions considered.

Overall, the MPOA showed excellent performance on

22 of the 23 benchmark functions, which translates to a

95.65% success rate relative to the other algorithms. These

results indicate that the MPOA has significantly improved

performance in optimization tasks when compared to the

original POA, PSO, and GA.

To further illustrate this, the convergence behaviors of

the proposed MPOA and the original POA are compared

across the 23 benchmark functions in the following Fig. 3

for F1 to F23. The figures highlight how the MPOA not

only reaches optimal solutions more efficiently but also

maintains a high level of consistency across different types

of optimization problems. This comprehensive analysis

confirms that the MPOA is a robust and effective

algorithm, showcasing its enhanced capability in handling

diverse and complex optimization tasks.

International Journal of Electrical Engineering and Applied Sciences

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 7, No. 2, October 2024

(a) Convergence behaviors for F1

(b) Convergence behaviors for F2

(c) Convergence behaviors for F3

(d) Convergence behaviors for F4

(e) Convergence behaviors for F5

(f) Convergence behaviors for F6

(g) Convergence behaviors for F7

(h) Convergence behaviors for F8

Sigmoid-Function-Based Adaptive Pelican Optimization Algorithm for Global Optimization

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 7, No. 2, October 2024

(i) Convergence behaviors for F9

(j) Convergence behaviors for F10

(k) Convergence behaviors for F11

(l) Convergence behaviors for F12

(m) Convergence behaviors for F13

(n) Convergence behaviors for F14

(o) Convergence behaviors for F15

(p) Convergence behaviors for F16

International Journal of Electrical Engineering and Applied Sciences

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 7, No. 2, October 2024

(q) Convergence behaviors for F17

(r) Convergence behaviors for F18

(s) Convergence behaviors for F19

(t) Convergence behaviors for F20

(u) Convergence behaviors for F21

(v) Convergence behaviors for F22

(w) Convergence behaviors for F23

Fig. 3. Comparison of convergence behaviours between MPOA and

POA for 23 benchmark functions

Sigmoid-Function-Based Adaptive Pelican Optimization Algorithm for Global Optimization

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 7, No. 2, October 2024

The convergence characteristics depicted in Fig. 3 for

F1 to F23 shows the performance of MPOA and POA. The

green line represents the convergence behavior of the

MPOA across different test functions, while the blue line

depicts the original POA's performance. The MPOA

exhibits superior convergence compared to the POA,

underscoring the enhancements achieved through the

proposed modifications. This improved performance is

consistently observed across all test functions, affirming

the effectiveness of the modifications made to the original

POA. Thus, the MPOA's enhanced convergence

characteristics highlight the significant advancements

introduced by the proposed changes.

The MPOA showed significantly faster and more

efficient convergence to optimal solutions than the

original POA on test functions F1, F2, F3, F4, F6, F7, F8,

F9, and F11, with a markedly greater difference. This

rapid convergence is crucial for practical applications

requiring high computational efficiency, such as

automated control systems. For functions F10, F12, and

F20, the MPOA achieved substantially better convergence

performance compared to the POA, resulting in superior

solutions, although the differences were not as

pronounced as in the earlier cases. In the remaining

scenarios, the MPOA and POA exhibited very competitive

convergence characteristics, with the MPOA narrowly

outperforming the POA, leading to better final

convergence solutions. These results highlight the

MPOA's enhanced efficiency and effectiveness, making it

a significant improvement over the original POA for

applications demanding rapid and reliable optimization.

The consistent achievement of better or competitive

convergence by the MPOA underscores its potential for

practical implementations where optimization speed and

solution quality are critical. Overall, the MPOA's ability

to quickly converge to superior solutions emphasizes its

value in real-world applications requiring high

computational time efficiency.

The findings from the simulations and comprehensive

statistical analysis strongly validate that incorporating the

sigmoid-function-based adaptive inertia weight has

substantially enhanced the performance of the POA. This

innovative adaptive mechanism empowers the algorithm

to dynamically and intelligently modify its search strategy

in real-time, leading to a remarkable improvement in both

the speed of convergence and the quality of the solutions

obtained. By allowing for this dynamic adjustment, the

algorithm becomes more efficient and effective,

optimizing its search process and yielding superior results

in a variety of scenarios. This enhancement demonstrates

a profound advancement in the POA's capabilities, making

it a robust and powerful tool for complex optimization

tasks. The substantial improvements observed underscore

the critical role of adaptive inertia weight in advancing

state-of-the-art optimization algorithms, highlighting its

potential for widespread application in fields that require

high precision and efficiency.

V. Conclusion

This paper presents the Sigmoid-function-based

Adaptive Pelican Optimization Algorithm (MPOA), an

improved version of the traditional Pelican Optimization

Algorithm (POA) designed to enhance its performance.

The POA includes two main strategies: the Exploration

phase and the Exploitation phase. The Exploration phase

involves searching new areas within the solution space,

while the Exploitation phase focuses on refining the

optimal solution space to achieve convergence. However,

the Exploitation phase tends to be less efficient, resulting

in slower convergence rates when seeking a global

optimum. The MPOA incorporates an adaptive inertia

weight mechanism that uses the sigmoid function to

dynamically balance exploration and exploitation

throughout the optimization process to address this issue.

This adaptive approach ensures a more efficient transition

between exploring new solution areas and refining

existing ones, thereby enhancing the overall optimization

process. The algorithm was tested using a set of widely

recognized standard benchmark functions to evaluate its

performance. The results on the 23 functions showed that

the MPOA significantly improved both convergence

speed and solution quality compared to the original POA

by producing good performance on 22 out of the 23

representing 95.65%. Additionally, the MPOA

outperformed other traditional optimization algorithms,

such as Particle Swarm Optimization (PSO) and Genetic

Algorithms (GA), in terms of achieving superior

optimization results.

This demonstrates the MPOA’s capability to handle a

wide range of optimization challenges effectively. These

findings indicate that the adaptive mechanism introduced

in the MPOA provides a more balanced and efficient

approach to optimization, leading to faster convergence

and higher-quality solutions. Overall, the development of

the MPOA represents a significant advancement in

optimization algorithms, offering an effective tool for

tackling complex optimization problems with enhanced

efficiency. The successful application of the MPOA to

standard benchmark functions highlights its potential for

broader applications in various optimization scenarios

such as the optimal power flow problem.

International Journal of Electrical Engineering and Applied Sciences

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 7, No. 2, October 2024

TABLE II

RESULTS COMPARISON OF BENCHMARK FUNCTIONS

FUNCTION
STATISTICAL

INDICATORS
GA PSO POA MPOA

F1

Sphere

MEAN

MEDIAN

STD
BEST

11.6208

11.04546

2.6142E-11
5.593489

4.1728E-04

9.920E-7

3.6142E-21
2.00E-10

2.87E-258

8.2E-248

4.51E-514

7.61E-264

0.000E+00

0.000E+00

0.000E+00
0.000E+00

F2

Schwefel

2.22

MEAN

MEDIAN
STD

BEST

4.6942

2.463873
5.4318E-14

1.591137

0.3114

0.130114
4.4667E-16

0.001741

1.43E-128

7.1E-123

2.90E-129

2.61E-131

0.000E+00

0.000E+00
0.000E+00

0.000E+00

F3

Schwefel 1.2

MEAN

MEDIAN

STD
BEST

1361.2743

1510.715

6.6096E-12
1014.689

588.3012

54.15445

9.7117E-12
1.614937

1.88E-256

8.2E-244

5.16E-614

7.36E-262

0.000E+00

0.000E+00

0.000E+00
0.000E+00

F4

Schwefel

2.21

MEAN

MEDIAN
STD

BEST

2.0396

2.09854
4.3321E-14

1.389849

4.3693

3.260672
4.2019E-15

1.60441

2.36E-133

2.8E-123

8.37E-134

6.08E-138

0.000E+00

0.000E+00
0.000E+00

0.000E+00

F5

Rosenbrock

MEAN
MEDIAN

STD

BEST

308.4196
279.5174

3.0412E-12

160.5013

50.5412
28.69298

1.8529E-13

3.647051

2.71253E+01
2.8707E+01

1.91E-15

2.62052E+01

1.5585E-03

6.1201E-05

5.4197E-03

1.3053E-05

F6

Quadratic

MEAN

MEDIAN

STD
BEST

15.6231

13.50

7.3160E-14
6.00

20.2691

19.00

2.6314
5.00

0.000E+00

0.000E+00

0.000E+00
0.000E+00

0.000E+00

0.000E+00

0.000E+00
0.000E+00

F7

Quartic

MEAN

MEDIAN
STD

BEST

8.6517E-2

0.005365
8.9206E-17

0.002111

0.3218

0.107872
3.4333E-16

0.029593

9.370E-06

4.860E-05

8.030E-20

7.050E-07

9.1874E-05

7.1340E-05

8.0161E-05

0.000E+00

F8

Michalewicz

MEAN
MEDIAN

STD

BEST

−8210.3415
−8117.66

833.5126

−9717.68

−6899.9556
−7098.95

625.4286

−8501.44

−9.3367304E+03
−8.50555E+03

2.640E-12

−9.85021E+03

-1.1941E+04
-1.256948E+04

2.81062E+03

-1.25694E+04

F9

Rastrigin

MEAN

MEDIAN

STD
BEST

62.1441

61.67858

2.1637E-13
36.86623

57.0503

55.22468

6.0013E-14
27.85883

0.000E+00

0.000E+00

0.000E+00
0.000E+00

0.000E+00

0.000E+00

0.000E+00
0.000E+00

F10

Ackley

MEAN

MEDIAN
STD

BEST

3.8134

3.120322
6.8972E-15

2.757203

2.6304

2.170083
6.9631E-15

1.155151

8.88E-16

8.88E-16

0.000E+00

8.88E-16

8.88E-16

8.88E-16

0.000E+00

8.88E-16

F11

Griewank

MEAN
MEDIAN

STD

BEST

1.1973
1.227231

4.8521E-15

1.140471

0.0364
0.029473

2.6398E-17

7.29E-09

0.000E+00
0.000E+00

0.000E+00

0.000E+00

0.000E+00
0.000E+00

0.000E+00

0.000E+00

F12

Penalized

MEAN

MEDIAN

STD
BEST

0.0469

0.04179

1.7456E-14
0.018364

0.4792

0.1556

9.3071E-15
0.000145

5.83E-02

1.464E-01

2.73E-16

4.52E-02

1.4389E-02

1.9981E-02

25401E-01
1.2133E-05

F13

Penalized 2

MEAN

MEDIAN
STD

BEST

1.2106

1.218053
3.5630E-15

0.49809

0.5156

0.043997
4.1427E-16

9.99E-07

1.42866E+00

2.976773E+00
2.83E-15

1.428663E+00

4.1196E-08

1.2697E-08
5.856E-08

2.0793E-08

F14

Vincent

MEAN
MEDIAN

STD

BEST

0.9969
0.998018

6.3124E-14

0.998004

2.3909
0.998004

8.0126E-15

0.998004

9.980E-01
9.980E-01

0.000E+00

9.980E-01

9.980E-01
9.980E-01

2.2316E-01

9.980E-01

F15

Kowalik

MEAN

MEDIAN

STD
BEST

0.0042

0.002074

1.6317E-17
0.000775

0.0528

0.000307

2.6159E-18
0.000307

3.000E-04

3.000E-04

1.21E-19

3.000E-04

3.000E-04

3.000E-04

2.24E-20

3.000E-04

F16

Michalewicz

MEAN
MEDIAN

STD

BEST

-1.0307
-1.0309

9.1449E-15

-1.0316

-1.0312
-1.0311

3.2496E-15

-1.0316

-1.0316E+00
-1.03163E+00

1.93E-18

-1.03163E+00

-1.0316E+00
-1.03163E+00

2.3068E-21

-1.0316E+00

F17

Schaffer 2

MEAN

MEDIAN

STD

0.4401

0.4016

1.4109E-16

0.7951

0.6521

3.9801E-5

3.978E-01

3.978E-01

0.000E+00

3.9799E-01

3.9789E-01

8.897E-02

Sigmoid-Function-Based Adaptive Pelican Optimization Algorithm for Global Optimization

ISSN: 2600-7495 eISSN: 2600-9633 IJEEAS Vol. 7, No. 2, October 2024

BEST 0.3978 0.3978 3.978E-01 3.979E-01

F18

Langerman

MEAN
MEDIAN

STD

BEST

4.3601
3.7581

2.6108E-15

3.0002

3.0010
3.0005

1.1041E-14

3.0E+00

3.000E+00
3.000E+00

1.090E-16

3.000E+00

3.0E+00
3.0E+00

6.7082E-21

3.0E+00

F19

Deb’s

MEAN

MEDIAN

STD
BEST

-3.8519

-3.8413

3.6015E-14
-3.86278

-3.8627

-3.8560

7.0114E-14
-3.8627

-3.86278E+00

-3.8627E+00

6.45E-01
-3.8627E+00

-3.6696E+00

-3.8628E+00

8.6374E-01
-3.862E+00

F20

Hartmann

(6-Dim)

MEAN

MEDIAN
STD

BEST

-2.8301

-2.96828
3.7124E-15

-3.31342

-3.2626

-3.2160
3.4567E-15

-3.322

-3.3220E+00

-3.322E+00
1.970E-16

-3.322E+00

-3.322E+00

-3.322E+00
2.570E-21

-3.322E+00

F21

Hartmann

(4-Dim)

MEAN

MEDIAN

STD
BEST

-4.2593

-4.16238

2.3631E-08
-7.82781

-5.4236

-5.10077

6.3014E-09
-8.0267

-1.0153E+01

-1.01532E+01

1.930E-16

-1.01532E+01

-1.0153E+01

-1.01532E+01

5.13E-23

-1.01532E+01

F22

Shekel’s

Foxholes

MEAN

MEDIAN
STD

BEST

-5.1183

-5.0296
6.1697E-14

-9.1106

-7.6351

-10.4020
5.0610E-14

-10.4024

-1.04029E+01

-1.04029E+01
3.57E-01

-1.04029E+01

-1.04029E+01

-1.04029E+01
2.420E-03

-1.04029E+01

F23

Shekel’s

Family

MEAN
MEDIAN

STD

BEST

-6.5675
-6.5629

5.6014E-14

-10.2227

-6.1653
-4.50554

5.3917E-15

-10.5364

-1.0536E+01
-1.05364E+01

3.970E-16

-1.05364E+01

-1.0536E+01
-1.05364E+01

1.950E-21

-1.05364E+01

Conflict of Interest

The authors declare no conflict of interest in the

publication of this research article.

Author Contributions

Author 1: Research conceptualization, interpretation of

results, supervision, draft review, and editing; Author 2:

Conducted simulation test, and analysis; Author 3:

Writing – original draft preparation.

References

[1] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar, “A
survey on new generation metaheuristic algorithms,” Comput Ind

Eng, vol. 137, Nov. 2019, doi: 10.1016/j.cie.2019.106040.

[2] B. Morales-Castañeda, D. Zaldívar, E. Cuevas, F. Fausto, and A.
Rodríguez, “A better balance in metaheuristic algorithms: Does it

exist?,” Swarm Evol Comput, vol. 54, May 2020, doi:

10.1016/j.swevo.2020.100671.
[3] J. O. Agushaka, A. E. Ezugwu, L. Abualigah, S. K. Alharbi, and

H. A. E. W. Khalifa, “Efficient Initialization Methods for

Population-Based Metaheuristic Algorithms: A Comparative
Study,” Archives of Computational Methods in Engineering, vol.

30, no. 3. 2023. doi: 10.1007/s11831-022-09850-4.

[4] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, and A. H.
Gandomi, “The Arithmetic Optimization Algorithm,” Comput

Methods Appl Mech Eng, vol. 376, Apr. 2021, doi:

10.1016/j.cma.2020.113609.
[5] P. Hu, J. S. Pan, and S. C. Chu, “Improved Binary Grey Wolf

Optimizer and Its application for feature selection,” Knowledge-

Based Syst., vol. 195, p. 105746, 2020, doi:
10.1016/j.knosys.2020.105746.

[6] M. Tubishat, M. Alswaitti, S. Mirjalili, M. A. Al-Garadi, M. T.

Alrashdan, and T. A. Rana, “Dynamic butterfly optimization
algorithm for feature selection,” IEEE Access, vol. 8, no.

September 2020, pp. 194303–194314, 2020, doi:

10.1109/ACCESS.2020.3033757.

[7] A. S. Assiri, A. G. Hussien, and M. Amin, “Ant lion optimization:
Variants, hybrids, and applications,” IEEE Access, vol. 8, pp.

77746–77764, 2020, doi: 10.1109/ACCESS.2020.2990338.

[8] A. F. S. Yussif, T. Seini, B. Ayasu, and E. A. Nyantakyi,
“Enhancing Reactive Power Compensation in Distribution Systems

through Optimal Integration of D-STATCOM using the Pelican

Optimization Algorithm,” International Journal of Electrical
Engineering and Applied Science, vol 7 no. 1, April 2024.

[9] D. Karaboga and C. Ozturk, “A novel clustering approach:

Artificial Bee Colony (ABC) algorithm,” Appl. Soft Comput. J.,
vol. 11, no. 1, pp. 652–657, 2011, doi: 10.1016/j.asoc.2009.12.025.

[10] S. Hamid, S. Moosavi, and V. K. Bardsiri, “Engineering

Applications of Artificial Intelligence Satin bowerbird optimizer :
A new optimization algorithm to optimize ANFIS for software

development e ff ort estimation,” Eng. Appl. Artif. Intell., vol. 60,

no. January, pp. 1–15, 2017, doi: 10.1016/j.engappai.2017.01.006.
[11] P. Trojovský and M. Dehghani, “Pelican Optimization Algorithm:

A Novel Nature-Inspired Algorithm for Engineering

Applications,” Sensors, vol. 22, no. 3, Feb. 2022, doi:
10.3390/s22030855.

[12] P. D. Kusuma and A. L. Prasasti, “Guided Pelican Algorithm,”

International Journal of Intelligent Engineering and Systems, vol.
15, no. 6, pp. 179–190, Dec. 2022, doi:

10.22266/ijies2022.1231.18.

[13] S. D. SeyedGarmroudi, G. Kayakutlu, M. O. Kayalica, and Ü.
Çolak, “Improved Pelican optimization algorithm for solving load

dispatch problems,” Energy, vol. 289, Feb. 2024, doi:

10.1016/j.energy.2023.129811.
[14] Z. Chen, Y. Wang, T. H. T. Chan, X. Li, and S. Zhao, “A Particle

Swarm Optimization Algorithm with Sigmoid Increasing Inertia

Weight for Structural Damage Identification,” Applied Sciences
(Switzerland), vol. 12, no. 7, Apr. 2022, doi:

10.3390/app12073429.

[15] J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma, S. S. Jadon, and
A. Abraham, “Inertia weight strategies in particle swarm

optimization,” Proceedings of the 2011 3rd World Congress on

Nature and Biologically Inspired Computing, NaBIC 2011, pp.
633–640, 2011, doi: 10.1109/NABIC.2011.6089659.

[16] H. M. Song et al., “Improved pelican optimization algorithm with
chaotic interference factor and elementary mathematical function,”

Soft comput, vol. 27, no. 15, pp. 10607–10646, Aug. 2023, doi:

10.1007/S00500-023-08205-W/METRICS.

