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Abstract – This paper introduces the Sigmoid-function-based Adaptive Pelican Optimization 

Algorithm (MPOA), an enhanced version of the traditional Pelican Optimization Algorithm (POA) 

aimed at improving the POA's performance. Inspired by the hunting behavior of pelicans, the POA 

features two main strategies: the Exploration phase and the Exploitation phase. The Exploration 

phase involves searching new areas within the solution space, while the Exploitation phase focuses 

on refining the optimal solution space to achieve convergence. However, the Exploitation phase is 

inefficient, leading to slower convergence rates when striving for a global optimum. The MPOA 

incorporates an adaptive inertia weight mechanism that leverages the sigmoid function to balance 

exploration and exploitation throughout the optimization process. This adaptive approach ensures 

an efficient transition between searching for new solution areas and refining existing ones, thereby 

enhancing the overall optimization process. The algorithm was tested using a set of widely 

recognized standard benchmark functions to assess its performance. The results demonstrated that 

the MPOA significantly improved both convergence speed and solution quality compared to the 

original POA. Additionally, the MPOA outperformed other traditional optimization algorithms, 

such as Particle Swarm Optimization (PSO) and Genetic Algorithms (GA), in terms of achieving 

better optimization results. It specifically outperformed the others on 22 out of the 23 functions 

representing a 95.65% success rate. These findings suggest that the proposed MPOA provides an 

efficient optimization approach, leading to faster convergence and higher-quality solutions.    
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I. Introduction 

Optimization algorithms are vital tools in engineering 

and applied sciences for addressing a wide range of 

complex optimization problems [1]. These algorithms 

strive to find the optimal solution from an extensive set of 

possibilities [2]. Metaheuristic optimization has been 

utilized in many optimization problems. Metaheuristic 

approaches, which serve as strategies for global 

optimization, emulate natural processes or social 

behaviors [3]-[4].  

Numerous metaheuristic methods have been inspired by 

nature. For instance, the binary Grey-Wolf Optimization 

(bGWO) is inspired by the fascinating behaviors of grey 

wolves [5], particularly their social hierarchy and hunting 

techniques, the Butterfly Optimization Algorithm (BOA) 

draws inspiration from the remarkable food foraging 

behavior of butterflies [6], Ant-Lion Optimization (ALO) 

draws inspiration from the ingenious hunting strategy of 

antlion larvae [7], where these larvae create sand pits to 

trap ants, demonstrating a sophisticated method of 

predation. Artificial-Bee Colony (ABC) is based on the 

foraging behavior of honey bees, which efficiently search 

for food sources using a complex communication system 

involving the waggle dance [8]. Satin-Bowerbird 

Optimization (SBO) mimics the unique mating behavior 

of male Satin Bowerbirds, known for building elaborate 

structures, or bowers, to attract females [9]. The Crow-

Search Algorithm (CSA) is inspired by the intelligent and 

social characteristics of crows, particularly their 

remarkable memory and ability to use tools [10]. Pelican 

Optimization Algorithm (POA) is inspired by the foraging 

and hunting strategies of pelicans, especially their 

cooperative behavior and unique methods of catching fish, 
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such as synchronized diving [5]. Finally, Particle Swarm 

Optimization (PSO) is derived from the social behavior 

observed in bird flocking and fish schooling, where 

individuals follow simple rules based on the behavior of 

their neighbors to achieve collective movement [2].  

Among these various optimization algorithms, the 

Pelican Optimization Algorithm (POA) stands out for its 

simplicity and effectiveness in solving optimization 

problems [11]. Inspired by the collaboration and 

competitive hunting behavior of pelicans to catch fish, 

POA simulates the cooperative and competitive strategies 

pelicans use to catch prey, translating this behavior into a 

metaheuristic optimization framework [12]. To optimize 

their catch, Pelicans use special hunting techniques that 

involve individual and group strategies. For fish hunting, 

Pelicans form semicircular formations which compels the 

fish to move towards the shore making them easier to 

catch. This coordinated effort improves the group's 

success rate, while individual pelicans compete for the 

best catch. This combination of cooperation and 

competition is key to the success of POA, which uses 

natural behaviors to find optimal solutions in complex 

search spaces.  

In the context of POA, several studies have highlighted 

its potential and limitations [16]. The original POA 

inspired by the collaborative and competitive hunting 

strategies of pelicans is effective in the exploration phase, 

where pelicans (candidate solutions) spread out and search 

the solution space [13]. However, the exploitation phase, 

which focuses on refining and converging to the optimal 

solution, is less efficient, leading to slower convergence 

rates in achieving high-quality solutions [14]. This aspect 

shows the need for researchers to enhance the algorithm's 

performance by balancing the exploration and exploitation 

phases effectively.  

Similar drawbacks have been addressed in other 

algorithms using adaptive weights mechanisms. For 

instance, adaptive inertia weights in PSO and adaptive 

mutation rates in GAs have shown promising results [15]. 

However, there has been limited focus on enhancing the 

POA's exploitation phase through adaptive mechanisms. 

This study aims to fill this gap by introducing a sigmoid-

function-based adaptive inertia weight in the POA. This 

creates the Sigmoid-function-based Adaptive Pelican 

Optimization Algorithm (MPOA), which uses a dynamic 

approach to address these challenges and improve the 

overall performance [16]. 

The primary aim of this research is to assess the impact 

of the Sigmoid-function-based Adaptive strategy on the 

POA's performance using well-known twenty-three 

standard benchmark test functions [12]. The study seeks 

to prove that incorporating an adaptive sigmoid-function-

based inertia weight can enhance the POA's convergence 

speed and solution quality in solving complex 

optimization problems. 

The structure of the rest of the paper is as follows: 

Section II explains the original Pelican Optimization 

Algorithm (POA) and its key components. Section III 

introduces the new Sigmoid-function-based Adaptive 

Pelican Optimization Algorithm (MPOA) and the 

reasoning behind its development. Section IV outlines the 

experimental setup and the testing process for the MPOA. 

Section V presents the results and discusses the outcomes. 

Finally, Section VI concludes the paper and suggests 

future research directions. 

II. The Original Pelican Optimization 

Algorithm (POA) 

The Pelican Optimization Algorithm (POA) is a 

metaheuristic optimizer inspired by pelican behavior. It is 

based on swarm intelligence, where the algorithm mimics 

the collaborative and competitive foraging behaviors of 

pelicans. In this system, each agent within the swarm 

shares communal knowledge to enhance their search 

efficiency and effectiveness. By emulating pelicans' 

natural strategies, POA optimizes the search process, 

making it a powerful tool for solving complex 

optimization problems. This approach leverages the 

strength of collective intelligence and adaptive behavior to 

achieve superior performance in various optimization 

tasks. Similar to Particle Swarm Optimization (PSO) [15], 

which models birds flying together in search of food, POA 

utilizes the group dynamics of pelicans hunting for prey to 

solve complex optimization problems effectively [12]. 

The Pelican Optimization Algorithm (POA) utilizes 

pelicans as primary elements in its population, with each 

pelican representing a potential solution. These pelicans 

propose values for the optimization variables based on 

their positions within the search space [17]. Initially, the 

pelicans are assigned random values within the problem's 

defined lower and upper bounds, as outlined in (1). This 

random assignment ensures a diverse set of solutions from 

the start, allowing the algorithm to effectively explore the 

search space. As the algorithm progresses, the pelicans 

continuously adjust their values in pursuit of the optimal 

solution. They do this by evaluating their current positions 

and updating them according to the optimization criteria. 

This iterative process enables the pelicans to gradually 

converge toward the best possible solution by refining 

their positions based on the feedback from the 

optimization process. Through this method, POA balances 

exploration and exploitation, leveraging the pelicans' 

movements to efficiently navigate the search space and 

identify optimal solutions. 

 

𝑋𝑖𝑗 = 𝑙𝑗 + (𝑢𝑗 − 𝑙𝑗). 𝑟𝑎𝑛𝑑 ,    𝑖 = 1,2, … , 𝑁    𝑗 =

1,2, … , 𝑚     (1) 

 

where; 𝑥𝑖𝑗  represents the value of the jth variable specified 

by the ith candidate solution. N denotes the population 

size, while m is the number of problem variables. 𝑙𝑗 and 𝑢𝑗 

represent the lower and upper bounds of the search 
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interval respectively, and rand is a randomly determined 

value within the interval [0, 1]. 

The POA algorithm emulates pelicans' hunting 

behavior to update candidate solutions. It replicates their 

strategies through a two-stage process, where the pelicans' 

attack and prey capture methods are used to refine and 

optimize potential solutions, improving the algorithm's 

effectiveness and efficiency. These two-stage processes 

are the Exploration Phase and the Exploitation Phase for 

searching for new possible solutions and refining already 

gotten solutions respectively for efficient execution. The 

two stages are further elaborated as follows: 

Exploration Phase: 

During the first phase, pelicans advance towards their 

prey once they have detected its position. The 

unpredictable nature of the prey's location significantly 

enhances the exploration capabilities of the Pelican 

Optimization Algorithm (POA) [12]. By emulating the 

pelican's strategy in approaching its prey, an exploration 

update operator is formulated. This operator, as detailed in 

(2), leverages the pelican's movement strategy to improve 

the algorithm's ability to explore the solution space more 

effectively. This ensures a more thorough search, 

potentially leading to better optimization results.  

The randomness in the prey's positioning introduces a 

crucial element of variability, which helps in avoiding 

local optima. This variability is essential for achieving a 

comprehensive exploration of the solution space, thereby 

enhancing the algorithm's overall performance. By 

incorporating the pelican's natural hunting behavior, the 

algorithm gains a robust mechanism for exploration, 

which is key to its effectiveness in finding optimal 

solutions. 

 

𝑥𝑖𝑗
𝑃1 = {

𝑥𝑖𝑗 + 𝑟𝑎𝑛𝑑. (𝑝𝑗 − 𝐼. 𝑥𝑖𝑗),     𝐹𝑝 < 𝐹𝑖

𝑥𝑖𝑗 + 𝑟𝑎𝑛𝑑. (𝑥𝑖𝑗 − 𝑝𝑗),              𝑒𝑙𝑠𝑒
    (2) 

 

where; 𝑥𝑖𝑗
𝑃1 represents the updated status of the ith pelican 

in the jth dimension during the exploration phase. 𝐼 is a 

random integer of either 1 or 2, 𝑝𝑗 is the location of the 

prey in the jth dimension, and 𝐹𝑝 is its objective function 

value. The exploration phase keeps a record of the best 

pelican using (3) as an updated technique. 

 

𝑋𝑖 = {
𝑋𝑖

𝑃1 ,         𝐹𝑖
𝑃1 < 𝐹𝑖

𝑋𝑖  ,                    𝑒𝑙𝑠𝑒
                (3) 

 

where; 𝑋𝑖
𝑃1 represents the new status of the pelican in the 

ith dimension, and 𝐹𝑖
𝑃1 represents its objective function 

value based on the exploration phase. 𝑋𝑖 is the present 

status of the pelican in the ith dimension, while 𝐹𝑖 denotes 

its objective function value. 

 

 

Exploitation Phase:  

Pelicans enhance their fishing efficiency by spreading 

their wings on the water's surface during the exploitation 

phase, lifting fish into their throat pouches. This technique 

boosts the algorithm's exploitation capability, leading to 

superior solutions within the hunting zone [12]. The 

mathematical modeling of the exploitation phase update 

operator, as shown in (4), is inspired by this pelican 

behavior of spreading wings on the water surface to 

extract fish. This analogy illustrates how the algorithm 

mimics pelicans' method of increasing their catch rate, 

ultimately improving convergence to optimal solutions. 

The pelicans' wing-spreading action serves as a biological 

metaphor for the algorithm's strategy, emphasizing the 

importance of effective exploitation in achieving better 

results.  

By drawing from the pelicans' natural hunting 

techniques, the algorithm can more efficiently navigate 

the solution space, ensuring a higher likelihood of 

identifying the best possible outcomes. 

 

𝑥𝑖𝑗
𝑃2 = 𝑥𝑖𝑗 + 𝑅. (1 −

𝑡

𝑇
) . (2. 𝑟𝑎𝑛𝑑 − 1). 𝑥𝑖𝑗     (4) 

 

where; 𝑥𝑖𝑗
𝑃2 represents the new status of the ith pelican in 

the jth dimension, R is a constant with a value of 0.2, and 

t and T represent the iteration count and the maximum 

number of iterations. The exploitation process has the 

same updated mechanism as the exploration phase as 

shown in (5). 

 

𝑋𝑖 = {
𝑋𝑖

𝑃2 ,         𝐹𝑖
𝑃2 < 𝐹𝑖

𝑋𝑖  ,                    𝑒𝑙𝑠𝑒
                (5) 

 

where; 𝑋𝑖
𝑃2 is the new status of the pelican in the ith 

dimension, and 𝐹𝑖
𝑃2 is its objective function value based 

on the exploitation phase. 

The implementation process of the POA is 

systematically presented in the flowchart in Fig. 1. 

III. Proposed Modification with Sigmoid-

function-based Adaptive (SA) Inertia 

Weight (⍵) 

Like most optimization algorithms, no single algorithm 

is capable of effectively solving all optimization 

problems. Each algorithm possesses distinct weaknesses 

or limitations that necessitate various modifications or 

enhancements to boost its performance in solving 

optimization challenges. POA is among these 

optimization algorithms and is recognized for its strong 

exploration capabilities. Nevertheless, the POA’s 

exploitation phase struggles with a slow search ability 

when it comes to achieving global optimal solutions [12].  
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Start POA

Input Problem Information

Determine Parameters N and T

Generate Initial Population using (1)
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Calculate Xij
P1 using (2)

j = m?

Update Xi using (3)

Calculate Xij
P2 using (4)

j = m?
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i = N?

Save best candidate solution so far

t = T?

Output best candidate solution 

End POA
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Yes

Yes

Yes

j = j+1

j = j+1

t = t+1

i = i+1

No

No

No

No

 

Fig. 1. Implementation Flowchart of POA 

 

The update function of POA is highly dependent on 

several factors: the iteration count, the initial value 

assigned to the pelican, and the maximum number of 

iterations. This dependency can lead to inefficiencies in 

the exploitation process for certain optimization 

applications [5]. As a result, while POA demonstrates 

notable potential in exploring the solution space, its ability 

to refine and exploit these solutions to achieve the best 

possible outcome is hindered. Moreover, the limited 

nature of the POA to adapt to changing conditions makes 

it inefficient to employ for different purposes.  

Addressing these specific weaknesses through targeted 

modifications could significantly enhance the overall 

efficiency and effectiveness of the POA, enabling it to 

perform better across a wider range of optimization 

problems. Such enhancements not only aim to improve the 

convergence speed but also seek to enhance the overall 

quality of solutions obtained. Therefore, continuous 

efforts to refine and improve the POA are essential for 

maximizing its utility in diverse optimization problems. In 

particular, incorporating advanced adaptive mechanisms 

can provide the necessary flexibility and robustness 

required for complex optimization tasks.  

In this work, a sigmoid-function-based adaptive inertia 

weight (⍵) [15] is introduced in the exploitation update 

phase to augment the poor exploitation capability of the 

POA as shown in Eqn. (6). This innovative approach 

leverages the mathematical properties of the sigmoid 

function to dynamically adjust the inertia weight, 

facilitating a more balanced and effective search strategy 

throughout the optimization process.  

 

𝑥𝑖𝑗
𝑃2 = ⍵𝑥𝑖𝑗 + 𝑅. (1 −

𝑡

𝑇
) . (2. 𝑟𝑎𝑛𝑑 − 1). 𝑥𝑖𝑗     (6) 

 

where,   represents the value of the inertia weight 

calculated using the sigmoid function expressed in Eqn. 

(7) below. 

 

𝜔𝑘 =  𝜔𝑚𝑎𝑥 −
(𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛)

(1+𝑒3.4−0.7×𝐼𝑡𝑒𝑟))
             (7) 

 

where: 𝜔𝑘 is the inertia weight at iteration k, 𝜔𝑚𝑖𝑛  and 

𝜔𝑚𝑎𝑥  are the minimum and maximum range of the inertia 

weights, respectively. Iter represents the iterations 

counter. 

The implementation of the proposed sigmoid-function-

based adaptive pelican optimization algorithm in this work 

is by modifying (4) at the exploitation phase of the original 

POA into (6), and then retaining the rest of the 

implementation as shown in Fig. 2. 

 

Testing Proposed MPOA Algorithm  

To establish the improvement of the proposed 

modification on the POA, it has been tested on the same 

standard benchmark test functions used in reference [12], 

and the simulation results compared to those of the 

original POA, PSO, and GA. 

Using MATLAB R2018a software, the proposed 

MPOA was coded and simulation tests on the same 

twenty-three (23) benchmark functions used in the 

original POA [11] with parameters as in Table I. Refer to 

Appendix A in [11] for the details of the benchmark 

functions. Thirty (30) simulations were repeated on each 

benchmark function with a thousand iterations each. The 

performances were compared with those of the original 
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POA, PSO, and GA reported in the literature [11] based 

on four statistical indicators; the mean, the median, the 

standard deviation, and the best optimal solution. The 

outcome is reported in the next section. 

 
Start POA

Input Problem Information

Determine Parameters N and T

Generate Initial Population using (1)

Calculate Objective Function Values

Generate Prey at Random

Calculate Xij
P1 using (2)

j = m?

Update Xi using (3)

Calculate Xij
P2 using (6)

j = m?

Update Xi using (5)

i = N?

Save best candidate solution so far

t = T?

Output best candidate solution 

End POA

Yes

Yes

Yes

Yes

j = j+1

j = j+1

t = t+1

i = i+1

No

No

No

No

 
Fig. 2. Implementation Flowchart of MPOA 

 
TABLE I 

PARAMETERS SETTINGS FOR SIMULATION 
Parameter Value 

Population Size 30 
Maximum Iteration 1000 

𝜔𝑚𝑖𝑛 0.1 

𝜔𝑚𝑎𝑥  1.0 

IV. Results and Discussion 

This section details the simulation results comparing 

the proposed modified Pelican Optimization Algorithm 

(MPOA) with the original Pelican Optimization 

Algorithm (POA), Particle Swarm Optimization (PSO), 

and Genetic Algorithm (GA). The performance metrics 

are summarized in Table II, where the best outcomes 

among the four algorithms are highlighted in bold. 

From the simulation results in Table II, it is evident that 

the MPOA demonstrates superior performance on nearly 

all of the 23 benchmark functions. However, there is an 

exception with function F7, where the original POA 

outperforms the other algorithms regarding mean value, 

median value, and standard deviation. Despite this, the 

MPOA still managed to produce the best single solution 

for the F7 function. 

These findings suggest that the MPOA generally 

enhances performance across a wide range of benchmark 

functions compared to the original POA, PSO, and GA. 

The improved performance of the MPOA is particularly 

notable in most cases, although it is important to 

acknowledge that there are instances, such as with the F7 

function, where the original POA may still hold an 

advantage in terms of consistency in mean, median, and 

standard deviation values. Nonetheless, the MPOA's 

ability to generate the best individual solution for F7 

indicates its potential for optimization tasks. 

Specifically, the Modified Pelican Optimization 

Algorithm (MPOA) surpassed the original Pelican 

Optimization Algorithm (POA), Particle Swarm 

Optimization (PSO), and Genetic Algorithm (GA) on 

benchmark functions F1, F2, F3, F4, F5, F8, F12, F13, and 

F17, totaling 9 out of the 23 functions tested. Additionally, 

the MPOA delivered competitive results on F6, F9, F10, 

F11, F14, F15, F16, F18, F19, F20, F21, F22, and F23 

when compared to the original POA, but it still 

outperformed PSO and GA on these functions. This 

accounts for 13 out of the 23 functions considered. 

Overall, the MPOA showed excellent performance on 

22 of the 23 benchmark functions, which translates to a 

95.65% success rate relative to the other algorithms. These 

results indicate that the MPOA has significantly improved 

performance in optimization tasks when compared to the 

original POA, PSO, and GA. 

To further illustrate this, the convergence behaviors of 

the proposed MPOA and the original POA are compared 

across the 23 benchmark functions in the following Fig. 3 

for F1 to F23. The figures highlight how the MPOA not 

only reaches optimal solutions more efficiently but also 

maintains a high level of consistency across different types 

of optimization problems. This comprehensive analysis 

confirms that the MPOA is a robust and effective 

algorithm, showcasing its enhanced capability in handling 

diverse and complex optimization tasks. 
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(a) Convergence behaviors for F1 

 
(b) Convergence behaviors for F2 

 
(c) Convergence behaviors for F3 

 
(d) Convergence behaviors for F4 

 
(e) Convergence behaviors for F5 

 
(f) Convergence behaviors for F6 

 
(g) Convergence behaviors for F7 

 
(h) Convergence behaviors for F8 
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(i) Convergence behaviors for F9 

 
(j) Convergence behaviors for F10 

 
(k) Convergence behaviors for F11 

 
(l) Convergence behaviors for F12 

 
(m) Convergence behaviors for F13 

 
(n) Convergence behaviors for F14 

 
(o) Convergence behaviors for F15 

 
(p) Convergence behaviors for F16 
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(q) Convergence behaviors for F17 

 
(r) Convergence behaviors for F18 

 
(s) Convergence behaviors for F19 

 
(t) Convergence behaviors for F20 

 
(u) Convergence behaviors for F21 

 
(v) Convergence behaviors for F22 

 
(w) Convergence behaviors for F23 

 
Fig. 3. Comparison of convergence behaviours between MPOA and 

POA for 23 benchmark functions 
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The convergence characteristics depicted in Fig. 3 for 

F1 to F23 shows the performance of MPOA and POA. The 

green line represents the convergence behavior of the 

MPOA across different test functions, while the blue line 

depicts the original POA's performance. The MPOA 

exhibits superior convergence compared to the POA, 

underscoring the enhancements achieved through the 

proposed modifications. This improved performance is 

consistently observed across all test functions, affirming 

the effectiveness of the modifications made to the original 

POA. Thus, the MPOA's enhanced convergence 

characteristics highlight the significant advancements 

introduced by the proposed changes. 

The MPOA showed significantly faster and more 

efficient convergence to optimal solutions than the 

original POA on test functions F1, F2, F3, F4, F6, F7, F8, 

F9, and F11, with a markedly greater difference. This 

rapid convergence is crucial for practical applications 

requiring high computational efficiency, such as 

automated control systems. For functions F10, F12, and 

F20, the MPOA achieved substantially better convergence 

performance compared to the POA, resulting in superior 

solutions, although the differences were not as 

pronounced as in the earlier cases. In the remaining 

scenarios, the MPOA and POA exhibited very competitive 

convergence characteristics, with the MPOA narrowly 

outperforming the POA, leading to better final 

convergence solutions. These results highlight the 

MPOA's enhanced efficiency and effectiveness, making it 

a significant improvement over the original POA for 

applications demanding rapid and reliable optimization.  

The consistent achievement of better or competitive 

convergence by the MPOA underscores its potential for 

practical implementations where optimization speed and 

solution quality are critical. Overall, the MPOA's ability 

to quickly converge to superior solutions emphasizes its 

value in real-world applications requiring high 

computational time efficiency. 

The findings from the simulations and comprehensive 

statistical analysis strongly validate that incorporating the 

sigmoid-function-based adaptive inertia weight has 

substantially enhanced the performance of the POA. This 

innovative adaptive mechanism empowers the algorithm 

to dynamically and intelligently modify its search strategy 

in real-time, leading to a remarkable improvement in both 

the speed of convergence and the quality of the solutions 

obtained. By allowing for this dynamic adjustment, the 

algorithm becomes more efficient and effective, 

optimizing its search process and yielding superior results 

in a variety of scenarios. This enhancement demonstrates 

a profound advancement in the POA's capabilities, making 

it a robust and powerful tool for complex optimization 

tasks. The substantial improvements observed underscore 

the critical role of adaptive inertia weight in advancing 

state-of-the-art optimization algorithms, highlighting its 

potential for widespread application in fields that require 

high precision and efficiency. 

V. Conclusion 

This paper presents the Sigmoid-function-based 

Adaptive Pelican Optimization Algorithm (MPOA), an 

improved version of the traditional Pelican Optimization 

Algorithm (POA) designed to enhance its performance. 

The POA includes two main strategies: the Exploration 

phase and the Exploitation phase. The Exploration phase 

involves searching new areas within the solution space, 

while the Exploitation phase focuses on refining the 

optimal solution space to achieve convergence. However, 

the Exploitation phase tends to be less efficient, resulting 

in slower convergence rates when seeking a global 

optimum. The MPOA incorporates an adaptive inertia 

weight mechanism that uses the sigmoid function to 

dynamically balance exploration and exploitation 

throughout the optimization process to address this issue. 

This adaptive approach ensures a more efficient transition 

between exploring new solution areas and refining 

existing ones, thereby enhancing the overall optimization 

process. The algorithm was tested using a set of widely 

recognized standard benchmark functions to evaluate its 

performance. The results on the 23 functions showed that 

the MPOA significantly improved both convergence 

speed and solution quality compared to the original POA 

by producing good performance on 22 out of the 23 

representing 95.65%. Additionally, the MPOA 

outperformed other traditional optimization algorithms, 

such as Particle Swarm Optimization (PSO) and Genetic 

Algorithms (GA), in terms of achieving superior 

optimization results.  

This demonstrates the MPOA’s capability to handle a 

wide range of optimization challenges effectively. These 

findings indicate that the adaptive mechanism introduced 

in the MPOA provides a more balanced and efficient 

approach to optimization, leading to faster convergence 

and higher-quality solutions. Overall, the development of 

the MPOA represents a significant advancement in 

optimization algorithms, offering an effective tool for 

tackling complex optimization problems with enhanced 

efficiency. The successful application of the MPOA to 

standard benchmark functions highlights its potential for 

broader applications in various optimization scenarios 

such as the optimal power flow problem. 
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TABLE II  

RESULTS COMPARISON OF BENCHMARK FUNCTIONS 

FUNCTION 
STATISTICAL 

INDICATORS 
GA PSO POA MPOA 

F1 

Sphere 

MEAN 

MEDIAN 

STD 
BEST 

11.6208 

11.04546 

2.6142E-11 
5.593489 

4.1728E-04 

9.920E-7 

3.6142E-21 
2.00E-10 

2.87E-258 

8.2E-248 

4.51E-514 

7.61E-264 

0.000E+00 

0.000E+00 

0.000E+00 
0.000E+00 

F2 

Schwefel 

2.22 

MEAN 

MEDIAN 
STD 

BEST 

4.6942 

2.463873 
5.4318E-14 

1.591137 

0.3114 

0.130114 
4.4667E-16 

0.001741 

1.43E-128 

7.1E-123 

2.90E-129 

2.61E-131 

0.000E+00 

0.000E+00 
0.000E+00 

0.000E+00 

F3 

Schwefel 1.2 

MEAN 

MEDIAN 

STD 
BEST 

1361.2743 

1510.715 

6.6096E-12 
1014.689 

588.3012 

54.15445 

9.7117E-12 
1.614937 

1.88E-256 

8.2E-244 

5.16E-614 

7.36E-262 

0.000E+00 

0.000E+00 

0.000E+00 
0.000E+00 

F4 

Schwefel 

2.21 

MEAN 

MEDIAN 
STD 

BEST 

2.0396 

2.09854 
4.3321E-14 

1.389849 

4.3693 

3.260672 
4.2019E-15 

1.60441 

2.36E-133 

2.8E-123 

8.37E-134 

6.08E-138 

0.000E+00 

0.000E+00 
0.000E+00 

0.000E+00 

F5 

Rosenbrock 

MEAN 
MEDIAN 

STD 

BEST 

308.4196 
279.5174 

3.0412E-12 

160.5013 

50.5412 
28.69298 

1.8529E-13 

3.647051 

2.71253E+01 
2.8707E+01 

1.91E-15 

2.62052E+01 

1.5585E-03 

6.1201E-05 

5.4197E-03 

1.3053E-05 

F6 

Quadratic 

MEAN 

MEDIAN 

STD 
BEST 

15.6231 

13.50 

7.3160E-14 
6.00 

20.2691 

19.00 

2.6314 
5.00 

0.000E+00 

0.000E+00 

0.000E+00 
0.000E+00 

0.000E+00 

0.000E+00 

0.000E+00 
0.000E+00 

F7 

Quartic 

MEAN 

MEDIAN 
STD 

BEST 

8.6517E-2 

0.005365 
8.9206E-17 

0.002111 

0.3218 

0.107872 
3.4333E-16 

0.029593 

9.370E-06 

4.860E-05 

8.030E-20 

7.050E-07 

9.1874E-05 

7.1340E-05 

8.0161E-05 

0.000E+00 

F8 

Michalewicz 

MEAN 
MEDIAN 

STD 

BEST 

−8210.3415 
−8117.66 

833.5126 

−9717.68 

−6899.9556 
−7098.95 

625.4286 

−8501.44 

−9.3367304E+03 
−8.50555E+03 

2.640E-12 

−9.85021E+03 

-1.1941E+04 
-1.256948E+04 

2.81062E+03 

-1.25694E+04 

F9 

Rastrigin 

MEAN 

MEDIAN 

STD 
BEST 

62.1441 

61.67858 

2.1637E-13 
36.86623 

57.0503 

55.22468 

6.0013E-14 
27.85883 

0.000E+00 

0.000E+00 

0.000E+00 
0.000E+00 

0.000E+00 

0.000E+00 

0.000E+00 
0.000E+00 

F10 

Ackley 

MEAN 

MEDIAN 
STD 

BEST 

3.8134 

3.120322 
6.8972E-15 

2.757203 

2.6304 

2.170083 
6.9631E-15 

1.155151 

8.88E-16 

8.88E-16 

0.000E+00 

8.88E-16 

8.88E-16 

8.88E-16 

0.000E+00 

8.88E-16 

F11 

Griewank 

MEAN 
MEDIAN 

STD 

BEST 

1.1973 
1.227231 

4.8521E-15 

1.140471 

0.0364 
0.029473 

2.6398E-17 

7.29E-09 

0.000E+00 
0.000E+00 

0.000E+00 

0.000E+00 

0.000E+00 
0.000E+00 

0.000E+00 

0.000E+00 

F12 

Penalized 

MEAN 

MEDIAN 

STD 
BEST 

0.0469 

0.04179 

1.7456E-14 
0.018364 

0.4792 

0.1556 

9.3071E-15 
0.000145 

5.83E-02 

1.464E-01 

2.73E-16 

4.52E-02 

1.4389E-02 

1.9981E-02 

25401E-01 
1.2133E-05 

F13 

Penalized 2 

MEAN 

MEDIAN 
STD 

BEST 

1.2106 

1.218053 
3.5630E-15 

0.49809 

0.5156 

0.043997 
4.1427E-16 

9.99E-07 

1.42866E+00 

2.976773E+00 
2.83E-15 

1.428663E+00 

4.1196E-08 

1.2697E-08 
5.856E-08 

2.0793E-08 

F14 

Vincent 

MEAN 
MEDIAN 

STD 

BEST 

0.9969 
0.998018 

6.3124E-14 

0.998004 

2.3909 
0.998004 

8.0126E-15 

0.998004 

9.980E-01 
9.980E-01 

0.000E+00 

9.980E-01 

9.980E-01 
9.980E-01 

2.2316E-01 

9.980E-01 

F15 

Kowalik 

MEAN 

MEDIAN 

STD 
BEST 

0.0042 

0.002074 

1.6317E-17 
0.000775 

0.0528 

0.000307 

2.6159E-18 
0.000307 

3.000E-04 

3.000E-04 

1.21E-19 

3.000E-04 

3.000E-04 

3.000E-04 

2.24E-20 

3.000E-04 

F16 

Michalewicz 

MEAN 
MEDIAN 

STD 

BEST 

-1.0307 
-1.0309 

9.1449E-15 

-1.0316 

-1.0312 
-1.0311 

3.2496E-15 

-1.0316 

-1.0316E+00 
-1.03163E+00 

1.93E-18 

-1.03163E+00 

-1.0316E+00 
-1.03163E+00 

2.3068E-21 

-1.0316E+00 

F17 

Schaffer 2 

MEAN 

MEDIAN 

STD 

0.4401 

0.4016 

1.4109E-16 

0.7951 

0.6521 

3.9801E-5 

3.978E-01 

3.978E-01 

0.000E+00 

3.9799E-01 

3.9789E-01 

8.897E-02 
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BEST 0.3978 0.3978 3.978E-01 3.979E-01 

F18 

Langerman 

MEAN 
MEDIAN 

STD 

BEST 

4.3601 
3.7581 

2.6108E-15 

3.0002 

3.0010 
3.0005 

1.1041E-14 

3.0E+00 

3.000E+00 
3.000E+00 

1.090E-16 

3.000E+00 

3.0E+00 
3.0E+00 

6.7082E-21 

3.0E+00 

F19 

Deb’s 

MEAN 

MEDIAN 

STD 
BEST 

-3.8519 

-3.8413 

3.6015E-14 
-3.86278 

-3.8627 

-3.8560 

7.0114E-14 
-3.8627 

-3.86278E+00 

-3.8627E+00 

6.45E-01 
-3.8627E+00 

-3.6696E+00 

-3.8628E+00 

8.6374E-01 
-3.862E+00 

F20 

Hartmann 

(6-Dim) 

MEAN 

MEDIAN 
STD 

BEST 

-2.8301 

-2.96828 
3.7124E-15 

-3.31342 

-3.2626 

-3.2160 
3.4567E-15 

-3.322 

-3.3220E+00 

-3.322E+00 
1.970E-16 

-3.322E+00 

-3.322E+00 

-3.322E+00 
2.570E-21 

-3.322E+00 

F21 

Hartmann 

(4-Dim) 

MEAN 

MEDIAN 

STD 
BEST 

-4.2593 

-4.16238 

2.3631E-08 
-7.82781 

-5.4236 

-5.10077 

6.3014E-09 
-8.0267 

-1.0153E+01 

-1.01532E+01 

1.930E-16 

-1.01532E+01 

-1.0153E+01 

-1.01532E+01 

5.13E-23 

-1.01532E+01 

F22 

Shekel’s 

Foxholes 

MEAN 

MEDIAN 
STD 

BEST 

-5.1183 

-5.0296 
6.1697E-14 

-9.1106 

-7.6351 

-10.4020 
5.0610E-14 

-10.4024 

-1.04029E+01 

-1.04029E+01 
3.57E-01 

-1.04029E+01 

-1.04029E+01 

-1.04029E+01 
2.420E-03 

-1.04029E+01 

F23 

Shekel’s 

Family 

MEAN 
MEDIAN 

STD 

BEST 

-6.5675 
-6.5629 

5.6014E-14 

-10.2227 

-6.1653 
-4.50554 

5.3917E-15 

-10.5364 

-1.0536E+01 
-1.05364E+01 

3.970E-16 

-1.05364E+01 

-1.0536E+01 
-1.05364E+01 

1.950E-21 

-1.05364E+01 
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