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Abstract – This paper presents the design and simulation of a Full State Feedback (FSFB) 

controller which controls the angular position of  Direct Current (DC) motor. The controller is used 

to reduce the rise time of the system when given a position set point. An integral controller is then 

added to reduce the steady state error of the output. Once the transfer function of the DC motor is 

found, the mathematical model is converted to state space. The process involves utilizing the Pole 

placement technique to identify the state feedback gain, which subsequently improves the system’s 

response time. The results, which are simulated in Simulink, show that the addition of FSFB control 

significantly reduces the rise time of the response from 4.013s to 0.966s. To overcome the steady-
state error of 9.84, integral control is added which reduced the error to zero. A reduction in rise 

time and steady state-error proves that a FSFB controller with integral control performs better than 

the original closed loop system without a controller. The research contribution is based on the 

mathematical modeling of a DC motor and the development of a state feedback controller, aiming 

to simplify the modeling process with its associated controllers. The methods presented can be used 

on any DC motor with known parameters. Finally, the control system is tested using random set 

points to prove the resilience of the controller to input changes.    
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I. Introduction 

Direct Current (DC) Motors are often used in industrial 

applications because of their simplicity, reliability, 

convenience across a range of applications and their cost 

effectiveness [1]. The motors are normally used with gears 

to provide a higher torque output from the motor shaft to 

the output of the gearbox. The high torque provided is one 

of the main reasons why DC motors are preferred over 

other motors [2]. Another advantage of DC motors is the 

fast response times to rotational changes as the motor can 

operate at high speeds [3]. High torque and fast response 

times are important factors needed for positional control 

of DC motors in various technological and industrial 
applications that require precision and stability. 

Position control of a DC motor is possible by using an 

instrument such as an encoder to feed the angular position 

and angular speed back into the system to create closed-

loop control [4]. Other instruments can also be used as 

demonstrated in [5] where the position of DC motors in a 

robot gripper is determined using strain gauge feedback. 

Although this method is more cost effective, encoder 

feedback is still the most reliable for position feedback.  

Actuating a DC motor to change its position will cause 

the motor to reach the desired set point over time, 

depending on the motor dynamics. There is no control 

over the response of the DC motor and therefore a 
controller is developed and added to change the response. 

Different types of controllers have been proposed by 

researchers to control a DC motor. In [1] and [3] the 

conventional Proportional-Integral-Derivative (PID) 

control method is used, with the encoder feedback serving 

as the process variable, and a potentiometer as the set 

point. The results show that the addition of a controller 

improved the set point tracking and robustness of the 

system when trying to achieve a desired angular position 

of a DC motor. 

Many other PID controllers have been developed for 
DC motor position control and are found in [6]-[13]. All 

the authors are successful in decreasing settling times and 

increasing rise times but had to go through trial-and-error 

methods to figure out the proportional, integral, and 

derivative gains required for PID control which is time 

consuming. While PID is still the most common controller 
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for DC motor position control, other authors have used 

different approaches to achieve better system responses 

and prevent guessing of gain values.  

Reference [2] utilized a hybrid controller combining 

both PID and Linear Quadratic Regulator (LQR) control 

to minimize the deviation from the desired set point. The 

controller’s performance achieved zero percent overshoot 

with a reduction in rise time which met the objectives of 

the design approach. In [14] an optimal nonlinear PID 
controller is used to control the position. Comparative 

testing against a non-optimized PID controller showed 

that the optimized controller demonstrated advanced 

tracking performance, compared to the conventional PID 

control, when trying to achieve the desired time 

performance specifications.  

Robust controller design is presented in [15] where H∞ 

and H2 methods are used for stabilizing a DC motor 

system that has uncertainties such as motor dynamics and 

external perturbation. Uncertainties with real time systems 

are explored in [16] by using a fuzzy logic controller to 
implement position control on  real-time operating system. 

In references [4], [16]-[21]. Modern control theory is 

applied by creating FSFB controllers through the 

utilization of state space analysis and pole placement 

technique.  FSFB controllers use the system’s state 

variables, such as velocity and angular position, to solve 

for a gain matrix K that is used to change the response of 

a system. The pole placement technique is used by the 

authors to determine the desired response of the system 

based on characteristics such as the system overshoot and 

settling time.  

Reference [4] compared the full state feedback 
controller response to a PID controller with the same step 

input. The FSFB controller had better set point tracking, 

showing faster system rise, and settling times. Reference 

[17] concluded that the more negative the poles are placed 

in the s-plane, when using the pole placement technique, 

the faster the rise and settling times of the system will be.  

Reference [19] compared the responses of three 

different controllers using the MATLAB/Simulink 

programming environment. The authors compared FSFB, 

FSFB with feed forward gain and FSFB with integral 

controller. The results showed that the response and 
stability of the full state feedback with integral controller 

was the best when tested with a unit step input. The author 

did not test the full capacity of the controller by simulating 

higher set points or drastic change in position set point 

values. 

Reference [16] went a step further by adding a 

Luenberger observer to the FSFB controller to estimate 

states that are not measurable. The observer also reduces 

the number of sensors needed as certain states can be 

estimated and fed back into the system. The author also 

proved that the estimated and actual measured values are 

similar when simulating and implementing the system. 
This paper presents the design and simulation results of 

an FSFB controller with integral control to control the 

angular position of a DC motor. FSFB control is chosen 

over PID control as the response times and robustness of 

the controller has been proven to be better. An observer is 

not considered as all states are simulated and will not need 

to be measured. 

 Firstly, the mathematical model of the DC motor for 

the open loop and closed loop systems are derived and 

converted to state space form using modern control theory. 

State space form is used as it is less complex and allows 

for easier design than using differential equations to model 
systems. The transfer function of the DC motor closed 

loop system is simplified in a form that makes it easier to 

convert to state space and develop the model of the 

system. This is done by substituting new terms into the 

mathematical model to reduce the complexity of the 

closed loop transfer function as well as the converted state 

space equations. Then, the controller is designed for the 

closed loop system to meet specific requirements such as 

a reduction in rise time and zero percent overshoot. The 

open-loop, closed-loop, FSFB controller, and FSFB 

controller with integral control, are all compared in a case 
study which tests the system responses and stability 

through simulation using the MATLAB/Simulink 

software environment. Each system is subjected to a unit 

step input and the performance is compared in terms of 

rise time, settling time, steady-state error, and overshoot.  

Previous published work has not fully tested the 

capabilities of the designed controllers to rapid changes in 

the position set point. This study uses random input set 

points to test the robustness of the response of the FSFB 

controller with integral control when there is a rapid 

change in the input position set point. 

II. Modeling of a DC Motor 

In control systems it is advisable to first design and 

simulate the appropriate model of the plant before 

applying the controller to the actual hardware. The system 

model is used to simulate and validate the plants’ response 

to changes in parameters. The DC motor is designed to 

convert electrical energy to mechanical energy. Therefore, 

the DC motor, shown in Fig. 1, is modelled by finding the 
electrical and mechanical system equations and then 

combining the equations to form the electro-mechanical 

transfer function, where: 

 

𝑉𝑎 Armature voltage 

𝑅𝑎 Armature resistance 

𝐿𝑎 Armature inductance 

𝑖𝑎 Armature current 

𝑒𝑏 Back electromotive force 

𝐾𝐵 Electromotive force constant 

𝜃̇𝑚 Angular velocity 

𝜃𝑚 Angular position 

𝑇𝑚 Input torque 

𝐽𝑚 Moment of inertia 

𝐵𝑚 Damping coefficient 

𝐾𝑇  Torque constant
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Fig. 1. Electromechanical diagram of a DC motor 

 

A. Modeling of the Electrical Component of  DC Motor 

The electrical component of a DC motor is modelled 
using Kirchhoff’s voltage law, which states the sum of 

potential differences in a closed circuit is equal to zero 

[17]. The balance equation is defined by  

𝑉𝑎(𝑡) − 𝑅𝑎𝑖𝑎(𝑡) − 𝐿𝑎
𝑑𝑖𝑎

𝑑𝑡
− 𝑒𝑏 = 0              (1) 

where Va is the voltage source, Ra is the resistance of 

the armature, La is the inductance of the armature, eb is the 

back electromotive force generated from the load, and ia(t) 

is the armature current that flows through the circuit with 

time. From (1), the voltage is expressed as 

𝑉𝑎(𝑡) = 𝑅𝑎𝑖𝑎(𝑡) + 𝐿𝑎
𝑑𝑖𝑎

𝑑𝑡
+ 𝑒𝑏                (2) 

𝑒𝑏 in the electrical circuit is expressed as  

𝑒𝑏 = 𝐾𝐵𝜃̇𝑚                               (3) 

where KB is the electromotive force constant of the DC 

motor and 𝜃̇𝑚  is the angular velocity of the DC motor. 

 

Substituting (3) into (2) yields  

𝑉𝑎(𝑡) = 𝑅𝑎𝑖𝑎(𝑡) + 𝐿𝑎
𝑑𝑖𝑎

𝑑𝑡
+ 𝐾𝐵𝜃̇𝑚               (4) 

Taking the Laplace transform of (4) obtains 

𝑉𝑎(𝑠) = 𝑅𝑎𝐼𝑎(𝑠) + 𝐿𝑎𝑠𝐼𝑎(𝑠) + 𝐾𝐵𝑠𝜃𝑚(𝑠)        (5) 

where θm is the angular position of the DC motor, and s   i

s a complex frequency domain parameter.  

Rearranging (5) yields 

𝑉𝑎(𝑠) − 𝐾𝐵𝑠𝜃𝑚(𝑠) = 𝐼𝑎(𝑠)(𝑅𝑎 + 𝐿𝑎(𝑠))        (6) 

It is necessary to convert all differential equations to the 

frequency domain using Laplace transformations to allow 

for easier algebraic manipulation of the time domain 

equations. The conversion also makes it easier to convert 

the electrical and mechanical components into one electro-

mechanical mathematical model. 

 
 

B. Modeling of the mechanical component of a DC motor 

It is important to model the mechanical component of 
the DC motor because the output rotational movement of 

the shaft is related to the input current from the electrical 

component. The electrical current flowing through the 

circuit causes a fixed magnetic field due to the magnet 

component in the DC motor [22]. This magnetic field 

applies a force on the inertial mass that causes an input 

torque which is defined using Newton’s 2nd law. The 

balance equation is defined by: 

𝑇𝑚 − 𝐵𝑚𝜃̇𝑚 = 𝐽𝑚𝜃̈𝑚𝐿.                             (7) 

where Tm is the input torque to the load, Bm is the 

damping coefficient, 𝜃̇𝑚  is the angular velocity of the DC 

motor, 𝜃̈𝑚  is the angular acceleration of the DC motor, Jm 

is the initial moment of inertia.  

 

The initial torque generated is expressed as 

𝑇𝑚 = 𝐾𝑇 ∗ 𝑖𝑎(𝑡)                              (8) 

where KT is the DC motor torque constant, and ia(t) is 

the armature current flows through the circuit with time. 

 

Substituting (8) into (7) yields 

𝐾𝑇𝑖𝑎(𝑡) − 𝐵𝑚𝜃̇𝑚 = 𝐽𝑚𝜃̈𝑚                      (9) 

This substitution is crucial as it allows the like term of 

ia(t) to be in both the electrical and mechanical balance 

equations. 

 

Taking the Laplace transform of (9) yields 

𝐾𝑇𝐼𝑎(𝑠) − 𝑠𝐵𝑚𝜃𝑚(𝑠) = 𝐽𝑚𝑠2𝜃𝑚(𝑠)                (10) 

Rearranging (10) the balance equation of the 

mechanical component of the DC motor is defined by 

𝐾𝑇𝐼𝑎(𝑠) = 𝑠(𝐽𝑚𝑠 + 𝐵𝑚)𝜃𝑚(𝑠)                   (11) 

C. DC Motor open loop transfer function 

It is necessary to obtain the complete electro-

mechanical transfer function of a DC motor to simulate the 

system. The electrical and mechanical component system 
equations, as described in (6) and (11) respectively, are 
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combined to formulate the full system. This is done by 

using the like term of Ia(s) which is found in both 
equations. Making Ia(s) the subject of each formula for (6) 

and (11) and then making the two equations equal obtains 

𝑉𝑎(𝑠) − 𝐾𝐵𝑠𝜃𝑚(𝑠) =
(𝐿𝑎𝑠+𝑅𝑎)(𝐽𝑚𝑠+𝐵𝑚)

𝐾𝑇
𝑠𝜃𝑚(𝑠)    (12) 

Rearranging (12) yields 

𝑉𝑎(𝑠) = [
(𝐿𝑎𝑠+𝑅𝑎)(𝐽𝑚𝑠+𝐵𝑚)+𝐾2

𝐾𝑇
] 𝑠𝜃𝑚(𝑠)                (13) 

Rearranging (13) to find the transfer function for input 

acceleration to output voltage obtains 

𝜃̇𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝐾𝐵

(𝐽𝑚𝑠+𝐵𝑚)(𝐿𝑎𝑠+𝑅𝑎)+𝐾𝐵∗𝐾𝑇
                            (14) 

Positional control is the objective of this work and 

therefore (14) is integrated to show the relationship 

between position and voltage. Integrating both sides of 

(14) obtains 

𝜃𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝐾𝐵

𝑠[(𝐽𝑚𝑠+𝐵𝑚)(𝐿𝑎𝑠+𝑅𝑎)+𝐾𝐵∗𝐾𝑇]
                  (15) 

Considering armature inductance in a fixed motor as 

negligible simplifies (15) to obtain 

𝜃𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝐾𝐵

𝑅𝑎𝐽𝑚𝑠2+𝑠[𝑅𝑎𝐵𝑚+𝐾𝐵∗𝐾𝑇]
                        (16) 

Simplifying (16) to find the full electro-mechanical 

component of the DC motor where voltage is the input and 

angular position is the output obtains 

𝜃𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝐾𝐵
𝑅𝑎

𝐽𝑚𝑠2+𝑠[
𝑅𝑎𝐵𝑚+𝐾𝐵∗𝐾𝑇

𝑅𝑎
]
                  (17) 

To reduce the complexity of the transfer function to 

allow for easier modeling of the system, new variables Km 

and am are used where 

𝐾𝑚 =
𝐾𝐵

𝑅𝑎𝐽𝑚
                                       (18) 

and 

𝑎𝑚 =
𝑅𝑎𝐵+𝐾𝐵∗𝐾𝑇

𝑅𝑎𝐽𝑚
                             (19) 

Substituting (18) and (19) into (17) yields 

𝜃𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝐾𝑚

𝑠(𝑠+𝑎𝑚)
                               (20) 

The motor parameters shown in Table I are substituted 

into (20) to obtain the complete transfer function for the 

specified DC motor. The motor used is a 6000 Revolutions 
Per Minute (RPM) 12V DC motor with a 1:270 gearbox. 

The load moment of inertia and damping ratios are from 

the incremental encoder that is mechanically connected 

through a 1:1 gear ratio at the end of the motor shaft. 

The total moment of inertia is defined as 

𝐽𝑚 = 𝐽𝑎 + 𝐽𝐿 (
𝑁1

𝑁2
)

2

=  0.013𝐾𝑔/𝑚2           (21)  

where Ja is the moment of inertia of the armature, JL is the 

moment of inertia of the load, N1 is the number of gear 

teeth on the motor side of the gearbox, and N2 is the 

number of gear teeth on the load side of the gearbox.  
 

The total damping coefficient is defined as 

𝐵𝑚 = 𝐵𝑎 + 𝐵𝐿 (
𝑁1

𝑁2
)

2

= 0.00002𝑁𝑠/𝑚      (22) 

where Ba is the motor damping coefficient, and BL is the 

load damping coefficient. 
 

TABLE I  

DC MOTOR PARAMETERS 

Symbol Parameter Value 

Ra Armature resistance 14.3 ohm 

La Armature inductance 0 henry 

KB 
Electromotive force 

constant 
0.425 volt/(rad/sec) 

KT Torque constant 2.3 N-m/ampere 

Ja 
Moment of inertia of 

the armature 
0.013 Kg/m2 

JL 
Moment of inertia of 

the load 
0.001 Kg/m2 

Ba 
Motor damping 

coefficient 
0.00001 Ns/m 

BL 
Load damping 

coefficient 
1 Ns/m 

N1 
Number of gears teeth 

on motor 
1 Tooth 

N2 
Number of gears teeth 

on load 
270 Teeth 

 

Substituting the motor parameters from Table I into (18) 

yields  

𝐾𝑚 =
0.425

14.3∗0.013
= 2.2862                            (23) 

Substituting the motor parameters from Table I into (19) 

yields  

𝑎𝑚 =
14.3∗0.00002+(0.425∗2.3)

14.3∗0.013
= 5.26              (24) 

Substituting the values for Km and am into (20) yields  

𝜃(𝑠)

𝑉𝑎(𝑠)
=

5,26

𝑠(𝑠+2.2862)
                                          (25) 

(25) is the transfer function for the open loop DC motor  

control system used in the simulation model. 

III. State Space Model 

As the systems become more complex, the task of 

modeling using differential equations and transfer 

functions becomes increasingly challenging. Therefore, it 

is necessary to use the state space representation to allow 

for easier design and modeling of systems. The state space 

representation of a physical system consists of a set of 

inputs, outputs, and state variables in a mathematical 

model which is related by first-order differential equations 
[23]. The states which change with time in a DC motor are 

position, velocity, and armature current. In this work, only 

position and velocity are considered. 
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The state space equations of a plant are expressed as 

𝑥̇(𝑡) = 𝑨𝑥(𝑡) + 𝑩𝑢(𝑡)                                 (26) 

𝑦(𝑡) = 𝑪𝑥(𝑡) + 𝑫𝑢(𝑡)                                (27) 

where A is the state matrix, B is the input matrix, C is the 

output matrix, and D is the feedthrough matrix. The A 
matrix captures the dynamics of the linear system, which 

includes how the energy of the system is captured, stored, 

and moved. The B matrix determines how the system 

responds to the inputs. All four matrices are calculated by 

finding the derivatives of the states of the system. 

Rearranging (20) to make angular position the subject of 

the formula obtains 

𝜃𝑚(𝑠) =
𝐾𝑚

𝑠(𝑠+𝑎𝑚)
𝑉𝑎(𝑠)                                (28) 

Simplifying (28) yields 

𝑠2𝜃𝑚(𝑠) + 𝑠𝜃𝑚(𝑠)𝑎𝑚 = 𝐾𝑚𝑉𝑎(𝑠)             (29) 

Taking the inverse Laplace transform of (29) and 

making angular acceleration the subject of the formula 

shows 

𝜃̈𝑚 = −𝜃̇𝑚𝑎𝑚 + 𝐾𝑚𝑉𝑎(𝑡)                (30) 

The states of the system are expressed as 

                            𝑦 = 𝜃𝑚 = 𝑿𝟏                                    (31) 

and 

                         𝑦̇ = 𝜃̇𝑚 = 𝑿̇𝟏 = 𝑿𝟐                             (32) 

and 

      𝑦̈ = 𝜃̈𝑚 = 𝑿̈𝟏 = 𝑿̇𝟐 = −𝜃̇𝑚𝑎𝑚 + 𝐾𝑚𝑉𝑎(𝑡)           (33) 

where X1  and X2 are vector components. 

These components make it easier to formulate the 

derivatives of the states. Once all the derivatives are found, 

it is possible to find the state space equations by making 

the derivatives the subject of the formula expressed as  

                                     𝑿̇𝟏 = 𝑿𝟐                                  (34) 

and 

                          𝑿̇𝟐 = −𝑋2𝑎𝑚 + 𝐾𝑚𝑉𝑎(𝑡)                   (35) 

The output equation is expressed as 

                                      𝑦 = 𝑿𝟏                                    (36) 

The matrices of the state space model are expressed as 

𝑨 = [
0 1
0 −𝑎𝑚

] ,  𝑩 = [
0

𝐾𝑚
] , 

𝑪 = [1 0] [
0

𝐾𝑚
] ,  𝑫 = 0 

Finally, the state space model of the open loop plant with 

no feedback is expressed as 

[𝜃̇
𝜃̈

] = [
0 1
0 −𝑎𝑚

] [
𝜃
𝜃̇

] + [
0

𝐾𝑚
] 𝑢(𝑡)                 (37) 

𝑦(𝑡) = [1 0] [
0

𝐾𝑚
]                                (38) 

Substituting the values calculated for Km and am into 

(37) and (38) gives the state space model as 

[𝜃̇
𝜃̈

] = [0 1
0 −5.26

] [
𝜃
𝜃̇

] + [ 0
2.2862

] 𝑢(𝑡)                 (39) 

𝑦(𝑡) = [1 0] [ 0
2.2862

]                                (40) 

 

Fig. 2 shows the actual Simulink block diagram of the 

DC motor in a state space form with unity feedback. The 

addition of the feedback in Fig. 2 creates a difference 

between the input and the output that allows the controller 

to actuate the motor towards the set point.  

 

Fig. 2. Simulink block diagram of a state space representation of closed-loop DC motor with a step input 

The addition of closed-loop control is done with an 

encoder or resolver, by subtracting the output of the sensor 

from the input set point to create a steady state error that 

allows the system to reach a steady state. A step input is 

used to test the response of the closed-loop system.  

 

The feedback function in MATLAB is used to add unity 

feedback to the state space model shown in (39) and (40) 

to give the closed-loop state space model of the DC motor 

system as 
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[𝜃̇
𝜃̈

] = [−5.26 −2.2862
1 0

] [
𝜃
𝜃̇

] + [2
0

] 𝑢(𝑡)      (41) 

𝑦(𝑡) = [0 1.1431] [
𝜃
𝜃̇

]                  (42) 

IV. State Feedback Controller Design 

A. Full State Feedback Controller 

An FSFB controller allows the movement of the system 
poles to any desired location. Moving the poles of a system 

results in different responses in factors such as rise time, 

overshoot, frequency, gain, and settling time. Poles are 

moved from the right-hand plane to the left, causing the 

system to become stable. This is done by multiplying each 

state by a certain gain K and feeding the result back into 

the system.  

1. Control law 

To determine how a system responds to input signals 

and regulates its output signals to achieve its desired 

objective, it is necessary to determine its control law. The 

control law is a mathematical representation that shows the 

behavior of a control system. Developing a control law is 

very beneficial when designing a system, performing 

optimization, analyzing stability, testing model 

compatibility, and preventing rework. Determining the 

control law before designing the control system establishes 

a solid foundation for the system’s overall performance. 
The first step is to determine the control law for an 

FSFB controller. Because the system is considered linear, 

there are no external disturbance therefore the output of the 

system is equal to the states. Applying this logic to 

matrices C and D into (27),  (43) is formed.  

𝒚(𝑡) = 𝒙(𝑡)                                      (43) 

The control law for an FSFB controller is given by  

𝒖(𝑡) = −𝑲𝒙(𝑡)                                (44) 

where K is the gain matrix. 

Substituting (44) into (26) yields  

𝒙̇(𝑡) = 𝑨𝒙(𝑡) + 𝑩(−𝑲𝒙(𝑡))                   (45) 

Rearranging (45) to find the closed-loop state space 

representation of the system yields 

𝒙̇(𝑡) = (𝑨 − 𝑩𝑲)𝒙(𝑡)                               (46) 

The A matrix in a closed-loop system is defined as 

𝑨𝑪𝑳 = 𝑨 − 𝑩𝑲                                (47) 

where ACL is the closed-loop A matrix. 

 

Substituting (47) into (46) yields 

𝑥̇(𝑡) = 𝑨𝑪𝑳. 𝑥(𝑡)                              (48) 

 

 

2. Controllability 

A DC motor system model needs to be in a controllable 

state to use an FSFB controller with pole placement. To 

check controllability, it is necessary to test if the system 

model is already in controllable canonical form. The test 

for controllability is expressed as 

𝑷𝑪 = [𝑨 𝑨𝑩]                                  (49) 

where PC is the controllability matrix.  

Substituting matrices, A and B into (49) yields  

𝑷𝑪 = [[−5.26 −2.2862
1 0

] [−5.26 −2.2862
1 0

] [2
0

]] 

 (50) 

Simplifying (50) yields 

𝑷𝑪 = [2 −10.5201
0 2

]                          (51) 

 As shown in (51), the second row of the matrix PC is 

not dependent on the first row and therefore the rank is 2, 

proving that the system is controllable. 

3. Solve for gain matrix K 

The value of the gain matrix K is used to move the poles 

of a system to a desired location. It is necessary to move 

the poles of the system to decrease the system’s rise time. 

The gain matrix K is multiplied by the input matrix B and 

then subtracted from the state matrix A. This shows that 

the value of K has a direct effect on the states of the system. 

Before moving the poles to a desired location, it is 
necessary to find the characteristic equation of the closed 

loop system with state feedback control. This is done by 

finding the value of the matrix ACL and then finding the 

eigenvalues of the closed-loop matrix. The values for 

matrix A, B, and K are substituted into (45) to obtain   

𝑨𝑪𝑳 = [−5.26 −2.2862
1 0

] − [2
0

] [𝐾1 𝐾2]       (52) 

where K1 and K2 are vectors of the matrix K. 

Simplifying (52) through matrix multiplication obtains 

𝑨𝑪𝑳 = [−5.26 −2.2862
1 0

] − [
2𝐾1 2𝐾2

0 0
]         (53) 

Simplifying (53) through matrix subtraction obtains 

𝑨𝑪𝑳 = [−5.26 − 2𝐾1 −2.2862 − 2𝐾2

1 0
]           (54) 

The next step is to find the eigenvalues of matrix ACL. 

The formula used to calculate the eigenvalues of a system 

is expressed as 

0 = 𝑑𝑒𝑡 (𝜆𝑰 − 𝑨𝑪𝑳)                               (55) 

where I is a 2x2 identity matrix, and λ is a mathematical  

constant. Substituting matrix ACL into (55) yields  

0 = 𝑑𝑒𝑡 ([𝜆 0
0 𝜆

] − [−5.26 − 2𝐾1 −2.2862 − 2𝐾2

1 0
])   

(56) 
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Simplifying (56) yields 

0 = 𝑑𝑒𝑡 ([
𝜆 − (−5.26 − 2𝐾1) −(−2.2862 − 2𝐾2)

−1 𝜆
])  

(57) 

Simplifying (57) yields 

0 = 𝑑𝑒𝑡 ([
𝜆 + 5.26 + 2𝐾1 2.2862 + 2𝐾2

−1 𝜆
])                

(58) 

Finding the determinant of (58) obtains 

      0 = (𝜆 + 5.26 + 2𝐾1)𝜆 − (−1 ∗ (2.2862 + 2𝐾2))     

     (59) 

Simplifying (59) obtains the characteristic equation of 

the closed-loop system expressed as 

           0 =  𝜆2 + 5.26𝜆 + 2𝐾1𝜆 + 2.2862 + 2𝐾2       (60) 

To achieve a faster rise time, the poles -2 and -6 are 

selected. These poles are known as the desired poles and is 

expressed as the desired characteristic equation 

0 = 𝜆2 + 8𝜆 + 12                               (61) 

The values for K1 and K2 are solved by equating the 

coefficients of the like terms in the closed loop and desired 

characteristic (60) and (61). The equated characteristic 

equations are expressed as 

5.26 + 2𝐾1 = 8                               (62) 

and 

2.2862 + 2𝐾2 = 12                               (63) 

Substituting the values of K1 and K2 into the gain matrix K

 yields  

𝐾 = [𝐾1 𝐾2] = [1.37 4.8569]                (64) 

Substituting the gain matrix K back into (52), the 

closed-loop A matrix is expressed as  

𝑨𝑪𝑳 = [−8 −12
1 0

]                                 (65) 

 

The state space model of the closed-loop system with an 

FSFB controller is expressed as 

[𝜃̇
𝜃̈

] = [−8 −12
1 0

] [
𝜃
𝜃̇

] + [2
0

] 𝑢(𝑡)               (66) 

     𝑦(𝑡) = [0 1.1431] [
𝜃
𝜃̇

]                           (67) 

4. Simulink simulation 

Fig. 3 shows the actual Simulink block diagram of the 

DC motor in state space form controlled by the developed 
FSFB controller. The gain matrix K is multiplied by the 

states and the output is fed back into the control system to 

change the response.  

 

Fig. 3. Simulink block diagram of a step input to a DC motor with an FSFB controller. 

B. Integral Control 

1. Control law 

The control law for integral control is a closed-loop 

system is expressed as  

𝑥̇𝑖 = −𝑪𝑥(𝑡) + 𝑟(𝑡)                             (68) 

where 𝑟(𝑡) is the input to the controller and 𝑥̇𝑖  is the input 

state of the integrator.  

 

The new control law is expressed as  

𝑢(𝑡) = −𝑲𝑥(𝑡) + 𝐾𝑖𝑥𝑖(𝑡)                             (69) 

where Ki is the integral gain xi and is the output state of the 

integrator. The state space model of the plant with FSFB 

and integral control according to the new control law is 

found by substituting (69) into (26) to obtain   

                 𝑥̇ = 𝑨𝑥(𝑡) + 𝑩(−𝑲𝑥(𝑡) + 𝐾𝑖𝑥𝑖(𝑡))          (70) 

Simplifying (70) yields 

                      𝑥̇ = (𝑨 − 𝑩𝑲)𝑥(𝑡) + 𝑩𝐾𝑖𝑥𝑖(𝑡)             (71) 

The state space model of the closed-loop system with an 

FSFB controller with integral control is expressed as 
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              [
𝑥̇
𝑥𝑛

] = [
𝑨 − 𝑩𝑲 𝑩𝐾𝑖

−𝑪 0
] [

𝑥
𝑥𝑛

] + [0
1

] 𝑟(𝑡)       (72) 

𝑦(𝑡) = [𝑪 0] [
𝑥
𝑥𝑛

]                             (73) 

2. Solve for gains K and Ki 

It is necessary to find values for K and Ki to achieve the 

desired transient response of the DC motor system. This is 
done by moving the poles to desired locations. Before 

moving the poles, the characteristic equation of the closed 

loop system with FSFB and integral control must be found. 

This is done by finding the value of ACL, BCL, and C, then 

substituting these values into the state space model. ACL is 

expressed as 

      𝑨𝑪𝑳 = 𝑨 − 𝑩𝑲 = [−5.26 − 2𝐾1 −2.286 − 2𝐾2

−1 0
]    

     (74) 

BCL is expressed as 

𝑩𝑪𝑳 =  𝑩𝐾𝑖 = [
2
0

] ∗ 𝐾𝑖                             (75) 

C is expressed as 

𝐶 = [0 1.1431]                             (76) 

Substituting matrices ACL, BCL and C into the state space 

model (72) and (73) yields  

[
ẋ1

ẋ2

xi

] = [
-5.26-2K1 -2.286-2K2 2Ki

1 0 0

0 1.1431 0

] [

x1

x2

xi

] + [0
1

] r(t) 

 (77) 

The next step is to find the eigenvalues of a matrix ACL. 

Substituting ACL into (55) yields 

    0=det ([
λ 0 0

0 λ 0

0 0 λ

] - [
-5.26-2K1 -2.286-2K2 2Ki

1 0 0

0 1 0

])  

  (78) 

Simplifying (78) yields 

         0=det ([
λ+5.26+2K1 2.286+2K2 -2Ki

-1 λ 0

0 -1.1431 λ

])      (79) 

Simplifying (79) obtains the characteristic equation of 

the closed-loop system expressed as 

0 = 𝜆3 + 5.26𝜆2 + 2𝜆2𝐾1 + 2.286𝜆 + 2𝜆𝐾2 − 2.2862𝐾𝑖

         (80) 

To achieve a faster rise time, the desired poles -2, -6, 

and -8 are selected. The desired characteristic equation is 
expressed as 

0 = 𝜆3 + 16𝜆2 + 76𝜆 + 96                             (81) 

The values for K1, K2 and Ki are solved by equating the 

coefficients of the like terms of the closed loop and desired 

characteristic equations (80) and (81). The equated 

characteristic equations are expressed as 

16 = 5.26 + 2𝐾1                             (82) 

and 

76 = 2.286 + 2𝐾2                             (83) 

and 

96 = −2.2862𝐾𝑖                             (84) 

Ki is expressed as 

𝐾𝑖 = −41.9915                             (85) 

K is expressed as 

𝑲 = [ 5.37
36.8569

]                             (86) 

Substituting K and Ki into (77) yields the state space 
model of the closed loop system  

[
𝜃̇
𝜃̈
𝜃𝑖

] = [
−5.26 −2.2862 0

1 0 0
0 −1.1431 0

] [
𝜃
𝜃̇
𝜃𝑖

] + [
2
0
0

] 𝑟(𝑡) (87) 

                   𝑦(𝑡) = [0 1.1431 0] [
𝑥

𝑥𝑛
]                   (88) 

3. Simulink simulation 

Fig. 4 shows the Simulink block diagram of the DC 

motor controlled by the FSFB controller with integral 

control added. The gain K is multiplied by the states and 
the output is fed back into the control system to alter the 

response. The output is fed back through an integrator and 

multiplied by the gain 𝐾𝑖 . The gain 𝐾𝑖  decreases the 

steady-state error that is fed back into the system. 

 

Fig. 4. DC Motor closed-loop control system FSFB and integral control
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V. Case Study 

Four cases are discussed and compared based on the 

different system responses and characteristics. The values 

for the matrices and the gains are input in the MATLAB 
environment and referenced in Simulink as variables. The 

models are tested using a step input and analyzed using the 

scope output function.  

Case 1 describes the step response of the closed-loop 

DC motor system. Case 2 describes the step response of 

the closed-loop DC motor system with state feedback 

control. Case 3 and 4 describe the step response of the DC 

motor system with state feedback and integral control. The 

difference between cases 3 and 4 is the change in the input 

set point to compare the controller response to multiple 

inputs.  

Fig. 5 to Fig. 8 show the step input responses for cases 
1, 2, 3, and 4 respectively. In each case, the set point is 

compared to the angular position feedback of the DC 

motor. As shown, Case 1 has the slowest rise time as there 

is no addition of a controller to the system. Adding a FSFB 

controller causes Case 2 to have a faster rise time than Case 

1, but the steady-state error is huge. The addition of 

integral control to the system reduces the steady state error 

to 0 which is seen in Case 3 and 4. The output graphs of 

the four cases are developed in MATLAB. The ‘To-

Workspace’ function block is used to extract the positions 

and set points from Simulink to MATLAB to allow for 
custom plotting of the results as presented in Fig. 5 to Fig. 

8.  

Table II compares the rise time, settling time, steady-

state error and overshoot percentage of the four test cases. 

According to the results, the characteristics of the closed-

loop system are improved through controller design as 

clarified by the case studies. The results confirm that the 

FSFB controller with integral is the best controller for the 

required response of the DC motor. There is an increase in 

rise time when integral control is added, but a steady-state 

error of zero is achieved. 

 

 

Fig. 5. Step response of a closed loop DC motor System to an angular 

positional set point of 1 

 

Fig. 6. Step response of system with FSFB control to an angular 

positional set point of 1 

 

 

Fig. 7. Step response of system with FSFB and Integral Control to an 

angular positional set point of 1 

 

Fig. 8. Step response of system with FSFB and Integral Control to an 

angular positional set point of 100 
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TABLE II  

COMPARISON BETWEEN DIFFERENT DC MOTOR CONTROLLERS 

Case Description 
Step 

Input 

Rise 

Time 

Settling 

Time 

Steady-

state 

error 

1 

Closed loop 

system 

without a 

controller 

1  4.013s 9.164s 0 

2 
Closed loop 

FSFB control 
1 0.966s 2.714s 9.84 

3 

Closed loop 

FSFB with 

Integral 

control (Input 

= 1) 

1 1.244s 3.303s 0 

4 

Closed loop 

FSFB with 

Integral 

control (Input 

= 100) 

100 1.244s 3.303s 0 

 

The closed loop system with FSFB and integral control 

is evaluated using a random number generator. This test 

aims to evaluate the closed loop system’s capabilities of 

random setpoint tracking as well as to analyze the 

robustness and stability of the system. The output shown 

in Fig. 9 shows that the angular position consistently 

follows the random set points with the same response. The 

system is proven to also be stable when actuating the DC 

motor in the opposite direction as the response in Fig. 9 

shows. 

 

Fig. 9. Scope output of the FSFB controller with integral control 

response to a random number generator 

VI. Conclusion 

The electrical and mechanical components of a DC 

motor are found and combined to form the electro-

mechanical mathematical model of the system. The 

Laplace transform is used to convert the model to the 

frequency domain to allow for easier algebraic 
manipulation of equations as well as easier conversion to 

Simulink block diagrams. Placeholder variables are used 

to further reduce the complexity of the model, which helps 

when converting to the state space equations. All 

calculations are provided to make it easier to adapt the 

mathematical model to any DC motor for testing purposes. 

Only the DC motor parameters are needed to use the 

calculation procedure outlined here.  

The model is tested in four different cases. Firstly, a 

closed-loop system with encoder feedback without a 
controller is shown. In this case, the response of the system 

is very slow, and therefore a controller is needed. The 

addition of an FSFB controller reduced the rise time but 

increased the steady-state error. The controller is designed 

by converting the mathematical model to state space 

equations and then solving for the state matrix gain 𝐾 

which is used to alter the response of the system. The 

system response is simulated, and it is shown that the 

response is much faster, but the steady state error is huge. 

Integral control is added to overcome the huge steady 
state error caused by the FSFB controller. The three 

controllers are simulated and compared, and the results 

showed that the full state feedback controller with integral 

control is the optimal controller to control the angular 

position of a DC motor.  

Furthermore, the final control system is tested using a 

random input generator to test the system’s set point 

tracking, robustness, and stability. The simulated results 

show that the control system can adapt to any change in set 

point at the same response rate each time. 

The research contribution makes it easier to adapt the 
calculations to any DC motor as required. A means of 

testing the stability and robustness of the developed 

models is also provided. The future work will focus on the 

implementation of the system using a PLC environment 

and real-time implementation together with simulation.  
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