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Abstract – This paper presents the design and simulation of a Full State Feedback (FSFB) 
controller which controls the angular position of  Direct Current (DC) motor. The controller is used 
to reduce the rise time of the system when given a position set point. An integral controller is then 
added to reduce the steady state error of the output. Once the transfer function of the DC motor is 
found, the mathematical model is converted to state space. The process involves utilizing the Pole 
placement technique to identify the state feedback gain, which subsequently improves the system’s 
response time. The results, which are simulated in Simulink, show that the addition of FSFB control 
significantly reduces the rise time of the response from 4.013s to 0.966s. To overcome the steady-
state error of 9.84, integral control is added which reduced the error to zero. A reduction in rise 
time and steady state-error proves that a FSFB controller with integral control performs better than 
the original closed loop system without a controller. The research contribution is based on the 
mathematical modeling of a DC motor and the development of a state feedback controller, aiming 
to simplify the modeling process with its associated controllers. The methods presented can be used 
on any DC motor with known parameters. Finally, the control system is tested using random set 
points to prove the resilience of the controller to input changes.    
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I. Introduction 
Direct Current (DC) Motors are often used in industrial 

applications because of their simplicity, reliability, 
convenience across a range of applications and their cost 
effectiveness [1]. The motors are normally used with gears 
to provide a higher torque output from the motor shaft to 
the output of the gearbox. The high torque provided is one 
of the main reasons why DC motors are preferred over 
other motors [2]. Another advantage of DC motors is the 
fast response times to rotational changes as the motor can 
operate at high speeds [3]. High torque and fast response 
times are important factors needed for positional control 
of DC motors in various technological and industrial 
applications that require precision and stability. 

Position control of a DC motor is possible by using an 
instrument such as an encoder to feed the angular position 
and angular speed back into the system to create closed-
loop control [4]. Other instruments can also be used as 
demonstrated in [5] where the position of DC motors in a 
robot gripper is determined using strain gauge feedback. 

Although this method is more cost effective, encoder 
feedback is still the most reliable for position feedback.  

Actuating a DC motor to change its position will cause 
the motor to reach the desired set point over time, 
depending on the motor dynamics. There is no control 
over the response of the DC motor and therefore a 
controller is developed and added to change the response. 

Different types of controllers have been proposed by 
researchers to control a DC motor. In [1] and [3] the 
conventional Proportional-Integral-Derivative (PID) 
control method is used, with the encoder feedback serving 
as the process variable, and a potentiometer as the set 
point. The results show that the addition of a controller 
improved the set point tracking and robustness of the 
system when trying to achieve a desired angular position 
of a DC motor. 

Many other PID controllers have been developed for 
DC motor position control and are found in [6]-[13]. All 
the authors are successful in decreasing settling times and 
increasing rise times but had to go through trial-and-error 
methods to figure out the proportional, integral, and 
derivative gains required for PID control which is time 
consuming. While PID is still the most common controller 
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for DC motor position control, other authors have used 
different approaches to achieve better system responses 
and prevent guessing of gain values.  

Reference [2] utilized a hybrid controller combining 
both PID and Linear Quadratic Regulator (LQR) control 
to minimize the deviation from the desired set point. The 
controller’s performance achieved zero percent overshoot 
with a reduction in rise time which met the objectives of 
the design approach. In [14] an optimal nonlinear PID 
controller is used to control the position. Comparative 
testing against a non-optimized PID controller showed 
that the optimized controller demonstrated advanced 
tracking performance, compared to the conventional PID 
control, when trying to achieve the desired time 
performance specifications.  

Robust controller design is presented in [15] where H∞ 
and H2 methods are used for stabilizing a DC motor 
system that has uncertainties such as motor dynamics and 
external perturbation. Uncertainties with real time systems 
are explored in [16] by using a fuzzy logic controller to 
implement position control on  real-time operating system. 

In references [4], [16]-[21]. Modern control theory is 
applied by creating FSFB controllers through the 
utilization of state space analysis and pole placement 
technique.  FSFB controllers use the system’s state 
variables, such as velocity and angular position, to solve 
for a gain matrix K that is used to change the response of 
a system. The pole placement technique is used by the 
authors to determine the desired response of the system 
based on characteristics such as the system overshoot and 
settling time.  

Reference [4] compared the full state feedback 
controller response to a PID controller with the same step 
input. The FSFB controller had better set point tracking, 
showing faster system rise, and settling times. Reference 
[17] concluded that the more negative the poles are placed 
in the s-plane, when using the pole placement technique, 
the faster the rise and settling times of the system will be.  

Reference [19] compared the responses of three 
different controllers using the MATLAB/Simulink 
programming environment. The authors compared FSFB, 
FSFB with feed forward gain and FSFB with integral 
controller. The results showed that the response and 
stability of the full state feedback with integral controller 
was the best when tested with a unit step input. The author 
did not test the full capacity of the controller by simulating 
higher set points or drastic change in position set point 
values. 

Reference [16] went a step further by adding a 
Luenberger observer to the FSFB controller to estimate 
states that are not measurable. The observer also reduces 
the number of sensors needed as certain states can be 
estimated and fed back into the system. The author also 
proved that the estimated and actual measured values are 
similar when simulating and implementing the system. 

This paper presents the design and simulation results of 
an FSFB controller with integral control to control the 
angular position of a DC motor. FSFB control is chosen 

over PID control as the response times and robustness of 
the controller has been proven to be better. An observer is 
not considered as all states are simulated and will not need 
to be measured. 

 Firstly, the mathematical model of the DC motor for 
the open loop and closed loop systems are derived and 
converted to state space form using modern control theory. 
State space form is used as it is less complex and allows 
for easier design than using differential equations to model 
systems. The transfer function of the DC motor closed 
loop system is simplified in a form that makes it easier to 
convert to state space and develop the model of the 
system. This is done by substituting new terms into the 
mathematical model to reduce the complexity of the 
closed loop transfer function as well as the converted state 
space equations. Then, the controller is designed for the 
closed loop system to meet specific requirements such as 
a reduction in rise time and zero percent overshoot. The 
open-loop, closed-loop, FSFB controller, and FSFB 
controller with integral control, are all compared in a case 
study which tests the system responses and stability 
through simulation using the MATLAB/Simulink 
software environment. Each system is subjected to a unit 
step input and the performance is compared in terms of 
rise time, settling time, steady-state error, and overshoot.  

Previous published work has not fully tested the 
capabilities of the designed controllers to rapid changes in 
the position set point. This study uses random input set 
points to test the robustness of the response of the FSFB 
controller with integral control when there is a rapid 
change in the input position set point. 

II. Modeling of a DC Motor 
In control systems it is advisable to first design and 

simulate the appropriate model of the plant before 
applying the controller to the actual hardware. The system 
model is used to simulate and validate the plants’ response 
to changes in parameters. The DC motor is designed to 
convert electrical energy to mechanical energy. Therefore, 
the DC motor, shown in Fig. 1, is modelled by finding the 
electrical and mechanical system equations and then 
combining the equations to form the electro-mechanical 
transfer function, where: 

 
𝑉𝑉𝑎𝑎 Armature voltage 
𝑅𝑅𝑎𝑎 Armature resistance 
𝐿𝐿𝑎𝑎 Armature inductance 
𝑖𝑖𝑎𝑎 Armature current 
𝑒𝑒𝑏𝑏 Back electromotive force 
𝐾𝐾𝐵𝐵 Electromotive force constant 
�̇�𝜃𝑚𝑚 Angular velocity 
𝜃𝜃𝑚𝑚 Angular position 
𝑇𝑇𝑚𝑚 Input torque 
𝐽𝐽𝑚𝑚 Moment of inertia 
𝐵𝐵𝑚𝑚 Damping coefficient 
𝐾𝐾𝑇𝑇  Torque constant
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Fig. 1. Electromechanical diagram of a DC motor 

 

A. Modeling of the Electrical Component of  DC Motor 

The electrical component of a DC motor is modelled 
using Kirchhoff’s voltage law, which states the sum of 
potential differences in a closed circuit is equal to zero 
[17]. The balance equation is defined by  

𝑉𝑉𝑎𝑎(𝑡𝑡) − 𝑅𝑅𝑎𝑎𝑖𝑖𝑎𝑎(𝑡𝑡) − 𝐿𝐿𝑎𝑎
𝑑𝑑𝑖𝑖𝑎𝑎
𝑑𝑑𝑑𝑑 − 𝑒𝑒𝑏𝑏 = 0              (1) 

where Va is the voltage source, Ra is the resistance of 
the armature, La is the inductance of the armature, eb is the 
back electromotive force generated from the load, and ia(t) 
is the armature current that flows through the circuit with 
time. From (1), the voltage is expressed as 

𝑉𝑉𝑎𝑎(𝑡𝑡) = 𝑅𝑅𝑎𝑎𝑖𝑖𝑎𝑎(𝑡𝑡) + 𝐿𝐿𝑎𝑎
𝑑𝑑𝑖𝑖𝑎𝑎
𝑑𝑑𝑑𝑑 + 𝑒𝑒𝑏𝑏                (2) 

𝑒𝑒𝑏𝑏 in the electrical circuit is expressed as  

𝑒𝑒𝑏𝑏 = 𝐾𝐾𝐵𝐵�̇�𝜃𝑚𝑚                               (3) 

where KB is the electromotive force constant of the DC 
motor and �̇�𝜃𝑚𝑚  is the angular velocity of the DC motor. 

 
Substituting (3) into (2) yields  

𝑉𝑉𝑎𝑎(𝑡𝑡) = 𝑅𝑅𝑎𝑎𝑖𝑖𝑎𝑎(𝑡𝑡) + 𝐿𝐿𝑎𝑎
𝑑𝑑𝑖𝑖𝑎𝑎
𝑑𝑑𝑑𝑑 + 𝐾𝐾𝐵𝐵�̇�𝜃𝑚𝑚               (4) 

Taking the Laplace transform of (4) obtains 

𝑉𝑉𝑎𝑎(𝑠𝑠) = 𝑅𝑅𝑎𝑎𝐼𝐼𝑎𝑎(𝑠𝑠) + 𝐿𝐿𝑎𝑎𝑠𝑠𝐼𝐼𝑎𝑎(𝑠𝑠) + 𝐾𝐾𝐵𝐵𝑠𝑠𝜃𝜃𝑚𝑚(𝑠𝑠)        (5) 

where θm is the angular position of the DC motor, and s   i
s a complex frequency domain parameter.  
Rearranging (5) yields 

𝑉𝑉𝑎𝑎(𝑠𝑠) − 𝐾𝐾𝐵𝐵𝑠𝑠𝜃𝜃𝑚𝑚(𝑠𝑠) = 𝐼𝐼𝑎𝑎(𝑠𝑠)(𝑅𝑅𝑎𝑎 + 𝐿𝐿𝑎𝑎(𝑠𝑠))        (6) 

It is necessary to convert all differential equations to the 
frequency domain using Laplace transformations to allow 
for easier algebraic manipulation of the time domain 
equations. The conversion also makes it easier to convert 
the electrical and mechanical components into one electro-
mechanical mathematical model. 
 
 

B. Modeling of the mechanical component of a DC motor 

It is important to model the mechanical component of 
the DC motor because the output rotational movement of 
the shaft is related to the input current from the electrical 
component. The electrical current flowing through the 
circuit causes a fixed magnetic field due to the magnet 
component in the DC motor [22]. This magnetic field 
applies a force on the inertial mass that causes an input 
torque which is defined using Newton’s 2nd law. The 
balance equation is defined by: 

𝑇𝑇𝑚𝑚 − 𝐵𝐵𝑚𝑚�̇�𝜃𝑚𝑚 = 𝐽𝐽𝑚𝑚�̈�𝜃𝑚𝑚𝑚𝑚.                             (7) 

where Tm is the input torque to the load, Bm is the 
damping coefficient, �̇�𝜃𝑚𝑚  is the angular velocity of the DC 
motor, �̈�𝜃𝑚𝑚  is the angular acceleration of the DC motor, Jm 
is the initial moment of inertia.  

 
The initial torque generated is expressed as 

𝑇𝑇𝑚𝑚 = 𝐾𝐾𝑇𝑇 ∗ 𝑖𝑖𝑎𝑎(𝑡𝑡)                              (8) 

where KT is the DC motor torque constant, and ia(t) is 
the armature current flows through the circuit with time. 

 
Substituting (8) into (7) yields 

𝐾𝐾𝑇𝑇𝑖𝑖𝑎𝑎(𝑡𝑡) − 𝐵𝐵𝑚𝑚�̇�𝜃𝑚𝑚 = 𝐽𝐽𝑚𝑚�̈�𝜃𝑚𝑚                      (9) 

This substitution is crucial as it allows the like term of 
ia(t) to be in both the electrical and mechanical balance 
equations. 

 
Taking the Laplace transform of (9) yields 

𝐾𝐾𝑇𝑇𝐼𝐼𝑎𝑎(𝑠𝑠) − 𝑠𝑠𝐵𝐵𝑚𝑚𝜃𝜃𝑚𝑚(𝑠𝑠) = 𝐽𝐽𝑚𝑚𝑠𝑠2𝜃𝜃𝑚𝑚(𝑠𝑠)                (10) 

Rearranging (10) the balance equation of the 
mechanical component of the DC motor is defined by 

𝐾𝐾𝑇𝑇𝐼𝐼𝑎𝑎(𝑠𝑠) = 𝑠𝑠(𝐽𝐽𝑚𝑚𝑠𝑠 + 𝐵𝐵𝑚𝑚)𝜃𝜃𝑚𝑚(𝑠𝑠)                   (11) 

C. DC Motor open loop transfer function 

It is necessary to obtain the complete electro-
mechanical transfer function of a DC motor to simulate the 
system. The electrical and mechanical component system 
equations, as described in (6) and (11) respectively, are 
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combined to formulate the full system. This is done by 
using the like term of Ia(s) which is found in both 
equations. Making Ia(s) the subject of each formula for (6) 
and (11) and then making the two equations equal obtains 

𝑉𝑉𝑎𝑎(𝑠𝑠) − 𝐾𝐾𝐵𝐵𝑠𝑠𝜃𝜃𝑚𝑚(𝑠𝑠) = (𝐿𝐿𝑎𝑎𝑠𝑠+𝑅𝑅𝑎𝑎)(𝐽𝐽𝑚𝑚𝑠𝑠+𝐵𝐵𝑚𝑚)
𝐾𝐾𝑇𝑇

𝑠𝑠𝜃𝜃𝑚𝑚(𝑠𝑠)    (12) 

Rearranging (12) yields 

𝑉𝑉𝑎𝑎(𝑠𝑠) = [(𝐿𝐿𝑎𝑎𝑠𝑠+𝑅𝑅𝑎𝑎)(𝐽𝐽𝑚𝑚𝑠𝑠+𝐵𝐵𝑚𝑚)+𝐾𝐾2

𝐾𝐾𝑇𝑇
] 𝑠𝑠𝜃𝜃𝑚𝑚(𝑠𝑠)                (13) 

Rearranging (13) to find the transfer function for input 
acceleration to output voltage obtains 

�̇�𝜃𝑚𝑚(𝑠𝑠)
𝑉𝑉𝑎𝑎(𝑠𝑠) = 𝐾𝐾𝐵𝐵

(𝐽𝐽𝑚𝑚𝑠𝑠+𝐵𝐵𝑚𝑚)(𝐿𝐿𝑎𝑎𝑠𝑠+𝑅𝑅𝑎𝑎)+𝐾𝐾𝐵𝐵∗𝐾𝐾𝑇𝑇
                            (14) 

Positional control is the objective of this work and 
therefore (14) is integrated to show the relationship 
between position and voltage. Integrating both sides of 
(14) obtains 

𝜃𝜃𝑚𝑚(𝑠𝑠)
𝑉𝑉𝑎𝑎(𝑠𝑠) = 𝐾𝐾𝐵𝐵

𝑠𝑠[(𝐽𝐽𝑚𝑚𝑠𝑠+𝐵𝐵𝑚𝑚)(𝐿𝐿𝑎𝑎𝑠𝑠+𝑅𝑅𝑎𝑎)+𝐾𝐾𝐵𝐵∗𝐾𝐾𝑇𝑇]                  (15) 

Considering armature inductance in a fixed motor as 
negligible simplifies (15) to obtain 

𝜃𝜃𝑚𝑚(𝑠𝑠)
𝑉𝑉𝑎𝑎(𝑠𝑠) = 𝐾𝐾𝐵𝐵

𝑅𝑅𝑎𝑎𝐽𝐽𝑚𝑚𝑠𝑠2+𝑠𝑠[𝑅𝑅𝑎𝑎𝐵𝐵𝑚𝑚+𝐾𝐾𝐵𝐵∗𝐾𝐾𝑇𝑇]                        (16) 

Simplifying (16) to find the full electro-mechanical 
component of the DC motor where voltage is the input and 
angular position is the output obtains 

𝜃𝜃𝑚𝑚(𝑠𝑠)
𝑉𝑉𝑎𝑎(𝑠𝑠) =

𝐾𝐾𝐵𝐵
𝑅𝑅𝑎𝑎

𝐽𝐽𝑚𝑚𝑠𝑠2+𝑠𝑠[𝑅𝑅𝑎𝑎𝐵𝐵𝑚𝑚+𝐾𝐾𝐵𝐵∗𝐾𝐾𝑇𝑇
𝑅𝑅𝑎𝑎

]
                  (17) 

To reduce the complexity of the transfer function to 
allow for easier modeling of the system, new variables Km 
and am are used where 

𝐾𝐾𝑚𝑚 = 𝐾𝐾𝐵𝐵
𝑅𝑅𝑎𝑎𝐽𝐽𝑚𝑚

                                       (18) 

and 

𝑎𝑎𝑚𝑚 = 𝑅𝑅𝑎𝑎𝐵𝐵+𝐾𝐾𝐵𝐵∗𝐾𝐾𝑇𝑇
𝑅𝑅𝑎𝑎𝐽𝐽𝑚𝑚

                             (19) 

Substituting (18) and (19) into (17) yields 
𝜃𝜃𝑚𝑚(𝑠𝑠)
𝑉𝑉𝑎𝑎(𝑠𝑠) = 𝐾𝐾𝑚𝑚

𝑠𝑠(𝑠𝑠+𝑎𝑎𝑚𝑚)                               (20) 

The motor parameters shown in Table I are substituted 
into (20) to obtain the complete transfer function for the 
specified DC motor. The motor used is a 6000 Revolutions 
Per Minute (RPM) 12V DC motor with a 1:270 gearbox. 
The load moment of inertia and damping ratios are from 
the incremental encoder that is mechanically connected 
through a 1:1 gear ratio at the end of the motor shaft. 

The total moment of inertia is defined as 

𝐽𝐽𝑚𝑚 = 𝐽𝐽𝑎𝑎 + 𝐽𝐽𝐿𝐿 (𝑁𝑁1
𝑁𝑁2

)
2

=  0.013𝐾𝐾𝐾𝐾/𝑚𝑚2           (21)  

where Ja is the moment of inertia of the armature, JL is the 
moment of inertia of the load, N1 is the number of gear 

teeth on the motor side of the gearbox, and N2 is the 
number of gear teeth on the load side of the gearbox.  

 
The total damping coefficient is defined as 

𝐵𝐵𝑚𝑚 = 𝐵𝐵𝑎𝑎 + 𝐵𝐵𝐿𝐿 (𝑁𝑁1
𝑁𝑁2

)
2

= 0.00002𝑁𝑁𝑠𝑠/𝑚𝑚      (22) 

where Ba is the motor damping coefficient, and BL is the 
load damping coefficient. 

 
TABLE I  

DC MOTOR PARAMETERS 

Symbol Parameter Value 

Ra Armature resistance 14.3 ohm 
La Armature inductance 0 henry 

KB Electromotive force 
constant 0.425 volt/(rad/sec) 

KT Torque constant 2.3 N-m/ampere 

Ja 
Moment of inertia of 

the armature 0.013 Kg/m2 

JL 
Moment of inertia of 

the load 0.001 Kg/m2 

Ba 
Motor damping 

coefficient 0.00001 Ns/m 

BL Load damping 
coefficient 1 Ns/m 

N1 
Number of gears teeth 

on motor 1 Tooth 

N2 
Number of gears teeth 

on load 270 Teeth 

 
Substituting the motor parameters from Table I into (18) 

yields  

𝐾𝐾𝑚𝑚 = 0.425
14.3∗0.013 = 2.2862                            (23) 

Substituting the motor parameters from Table I into (19) 
yields  

𝑎𝑎𝑚𝑚 = 14.3∗0.00002+(0.425∗2.3)
14.3∗0.013 = 5.26              (24) 

Substituting the values for Km and am into (20) yields  
𝜃𝜃(𝑠𝑠)
𝑉𝑉𝑎𝑎(𝑠𝑠) = 5,26

𝑠𝑠(𝑠𝑠+2.2862)                                          (25) 

(25) is the transfer function for the open loop DC motor  
control system used in the simulation model. 

III. State Space Model 
As the systems become more complex, the task of 

modeling using differential equations and transfer 
functions becomes increasingly challenging. Therefore, it 
is necessary to use the state space representation to allow 
for easier design and modeling of systems. The state space 
representation of a physical system consists of a set of 
inputs, outputs, and state variables in a mathematical 
model which is related by first-order differential equations 
[23]. The states which change with time in a DC motor are 
position, velocity, and armature current. In this work, only 
position and velocity are considered. 
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The state space equations of a plant are expressed as 
�̇�𝑥(𝑡𝑡) = 𝑨𝑨𝑥𝑥(𝑡𝑡) + 𝑩𝑩𝑢𝑢(𝑡𝑡)                                 (26) 

𝑦𝑦(𝑡𝑡) = 𝑪𝑪𝑥𝑥(𝑡𝑡) + 𝑫𝑫𝑢𝑢(𝑡𝑡)                                (27) 

where A is the state matrix, B is the input matrix, C is the 
output matrix, and D is the feedthrough matrix. The A 
matrix captures the dynamics of the linear system, which 
includes how the energy of the system is captured, stored, 
and moved. The B matrix determines how the system 
responds to the inputs. All four matrices are calculated by 
finding the derivatives of the states of the system. 
Rearranging (20) to make angular position the subject of 
the formula obtains 

𝜃𝜃𝑚𝑚(𝑠𝑠) = 𝐾𝐾𝑚𝑚
𝑠𝑠(𝑠𝑠+𝑎𝑎𝑚𝑚) 𝑉𝑉𝑎𝑎(𝑠𝑠)                                (28) 

Simplifying (28) yields 

𝑠𝑠2𝜃𝜃𝑚𝑚(𝑠𝑠) + 𝑠𝑠𝜃𝜃𝑚𝑚(𝑠𝑠)𝑎𝑎𝑚𝑚 = 𝐾𝐾𝑚𝑚𝑉𝑉𝑎𝑎(𝑠𝑠)             (29) 

Taking the inverse Laplace transform of (29) and 
making angular acceleration the subject of the formula 
shows 

�̈�𝜃𝑚𝑚 = −�̇�𝜃𝑚𝑚𝑎𝑎𝑚𝑚 + 𝐾𝐾𝑚𝑚𝑉𝑉𝑎𝑎(𝑡𝑡)                (30) 

The states of the system are expressed as 

                            𝑦𝑦 = 𝜃𝜃𝑚𝑚 = 𝑿𝑿𝟏𝟏                                    (31) 

and 

                         �̇�𝑦 = �̇�𝜃𝑚𝑚 = �̇�𝑿𝟏𝟏 = 𝑿𝑿𝟐𝟐                             (32) 

and 

      �̈�𝑦 = �̈�𝜃𝑚𝑚 = �̈�𝑿𝟏𝟏 = �̇�𝑿𝟐𝟐 = −�̇�𝜃𝑚𝑚𝑎𝑎𝑚𝑚 + 𝐾𝐾𝑚𝑚𝑉𝑉𝑎𝑎(𝑡𝑡)           (33) 

where X1  and X2 are vector components. 
These components make it easier to formulate the 

derivatives of the states. Once all the derivatives are found, 

it is possible to find the state space equations by making 
the derivatives the subject of the formula expressed as  

                                     �̇�𝑿𝟏𝟏 = 𝑿𝑿𝟐𝟐                                  (34) 

and 

                          �̇�𝑿𝟐𝟐 = −𝑋𝑋2𝑎𝑎𝑚𝑚 + 𝐾𝐾𝑚𝑚𝑉𝑉𝑎𝑎(𝑡𝑡)                   (35) 

The output equation is expressed as 

                                      𝑦𝑦 = 𝑿𝑿𝟏𝟏                                    (36) 

The matrices of the state space model are expressed as 

𝑨𝑨 = [0 1
0 −𝑎𝑎𝑚𝑚

] ,  𝑩𝑩 = [ 0
𝐾𝐾𝑚𝑚

] , 

𝑪𝑪 = [1 0] [ 0
𝐾𝐾𝑚𝑚

] ,  𝑫𝑫 = 0 

Finally, the state space model of the open loop plant with 
no feedback is expressed as 

[�̇�𝜃
�̈�𝜃

] = [0 1
0 −𝑎𝑎𝑚𝑚

] [𝜃𝜃
�̇�𝜃] + [ 0

𝐾𝐾𝑚𝑚
] 𝑢𝑢(𝑡𝑡)                 (37) 

𝑦𝑦(𝑡𝑡) = [1 0] [ 0
𝐾𝐾𝑚𝑚

]                                (38) 

Substituting the values calculated for Km and am into 
(37) and (38) gives the state space model as 

[�̇�𝜃
�̈�𝜃

] = [0 1
0 −5.26] [𝜃𝜃

�̇�𝜃] + [ 0
2.2862] 𝑢𝑢(𝑡𝑡)                 (39) 

𝑦𝑦(𝑡𝑡) = [1 0] [ 0
2.2862]                                (40) 

 

Fig. 2 shows the actual Simulink block diagram of the 
DC motor in a state space form with unity feedback. The 
addition of the feedback in Fig. 2 creates a difference 
between the input and the output that allows the controller 
to actuate the motor towards the set point.  

 
Fig. 2. Simulink block diagram of a state space representation of closed-loop DC motor with a step input 

The addition of closed-loop control is done with an 
encoder or resolver, by subtracting the output of the sensor 
from the input set point to create a steady state error that 
allows the system to reach a steady state. A step input is 
used to test the response of the closed-loop system.  

 

The feedback function in MATLAB is used to add unity 
feedback to the state space model shown in (39) and (40) 
to give the closed-loop state space model of the DC motor 
system as 
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[�̇�𝜃
�̈�𝜃

] = [−5.26 −2.2862
1 0 ] [𝜃𝜃

�̇�𝜃] + [2
0] 𝑢𝑢(𝑡𝑡)      (41) 

𝑦𝑦(𝑡𝑡) = [0 1.1431] [𝜃𝜃
�̇�𝜃]                  (42) 

IV. State Feedback Controller Design 

A. Full State Feedback Controller 

An FSFB controller allows the movement of the system 
poles to any desired location. Moving the poles of a system 
results in different responses in factors such as rise time, 
overshoot, frequency, gain, and settling time. Poles are 
moved from the right-hand plane to the left, causing the 
system to become stable. This is done by multiplying each 
state by a certain gain K and feeding the result back into 
the system.  

1. Control law 
To determine how a system responds to input signals 

and regulates its output signals to achieve its desired 
objective, it is necessary to determine its control law. The 
control law is a mathematical representation that shows the 
behavior of a control system. Developing a control law is 
very beneficial when designing a system, performing 
optimization, analyzing stability, testing model 
compatibility, and preventing rework. Determining the 
control law before designing the control system establishes 
a solid foundation for the system’s overall performance. 

The first step is to determine the control law for an 
FSFB controller. Because the system is considered linear, 
there are no external disturbance therefore the output of the 
system is equal to the states. Applying this logic to 
matrices C and D into (27),  (43) is formed.  

𝒚𝒚(𝑡𝑡) = 𝒙𝒙(𝑡𝑡)                                      (43) 

The control law for an FSFB controller is given by  
𝒖𝒖(𝑡𝑡) = −𝑲𝑲𝒙𝒙(𝑡𝑡)                                (44) 

where K is the gain matrix. 

Substituting (44) into (26) yields  

�̇�𝒙(𝑡𝑡) = 𝑨𝑨𝒙𝒙(𝑡𝑡) + 𝑩𝑩(−𝑲𝑲𝒙𝒙(𝑡𝑡))                   (45) 

Rearranging (45) to find the closed-loop state space 
representation of the system yields 

�̇�𝒙(𝑡𝑡) = (𝑨𝑨 − 𝑩𝑩𝑲𝑲)𝒙𝒙(𝑡𝑡)                               (46) 

The A matrix in a closed-loop system is defined as 

𝑨𝑨𝑪𝑪𝑪𝑪 = 𝑨𝑨 − 𝑩𝑩𝑲𝑲                                (47) 

where ACL is the closed-loop A matrix. 
 
Substituting (47) into (46) yields 

�̇�𝑥(𝑡𝑡) = 𝑨𝑨𝑪𝑪𝑪𝑪. 𝑥𝑥(𝑡𝑡)                              (48) 

 

 

2. Controllability 
A DC motor system model needs to be in a controllable 

state to use an FSFB controller with pole placement. To 
check controllability, it is necessary to test if the system 
model is already in controllable canonical form. The test 
for controllability is expressed as 

𝑷𝑷𝑪𝑪 = [𝑨𝑨 𝑨𝑨𝑩𝑩]                                  (49) 

where PC is the controllability matrix.  

Substituting matrices, A and B into (49) yields  

𝑷𝑷𝑪𝑪 = [[−5.26 −2.2862
1 0 ] [−5.26 −2.2862

1 0 ] [2
0]] 

 (50) 

Simplifying (50) yields 

𝑷𝑷𝑪𝑪 = [2 −10.5201
0 2 ]                          (51) 

 As shown in (51), the second row of the matrix PC is 
not dependent on the first row and therefore the rank is 2, 
proving that the system is controllable. 

3. Solve for gain matrix K 
The value of the gain matrix K is used to move the poles 

of a system to a desired location. It is necessary to move 
the poles of the system to decrease the system’s rise time. 
The gain matrix K is multiplied by the input matrix B and 
then subtracted from the state matrix A. This shows that 
the value of K has a direct effect on the states of the system. 

Before moving the poles to a desired location, it is 
necessary to find the characteristic equation of the closed 
loop system with state feedback control. This is done by 
finding the value of the matrix ACL and then finding the 
eigenvalues of the closed-loop matrix. The values for 
matrix A, B, and K are substituted into (45) to obtain   

𝑨𝑨𝑪𝑪𝑪𝑪 = [−5.26 −2.2862
1 0 ] − [2

0] [𝐾𝐾1 𝐾𝐾2]       (52) 

where K1 and K2 are vectors of the matrix K. 

Simplifying (52) through matrix multiplication obtains 

𝑨𝑨𝑪𝑪𝑪𝑪 = [−5.26 −2.2862
1 0 ] − [2𝐾𝐾1 2𝐾𝐾2

0 0 ]         (53) 

Simplifying (53) through matrix subtraction obtains 

𝑨𝑨𝑪𝑪𝑪𝑪 = [−5.26 − 2𝐾𝐾1 −2.2862 − 2𝐾𝐾2
1 0 ]           (54) 

The next step is to find the eigenvalues of matrix ACL. 
The formula used to calculate the eigenvalues of a system 
is expressed as 

0 = 𝑑𝑑𝑑𝑑𝑡𝑡 (𝜆𝜆𝑰𝑰 − 𝑨𝑨𝑪𝑪𝑪𝑪)                               (55) 

where I is a 2x2 identity matrix, and λ is a mathematical  
constant.  

0 = 𝑑𝑑𝑑𝑑𝑡𝑡 ([𝜆𝜆 0
0 𝜆𝜆] − [−5.26 − 2𝐾𝐾1 −2.2862 − 2𝐾𝐾2

1 0 ])   
(56) 
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Simplifying (56) yields 

0 = 𝑑𝑑𝑑𝑑𝑑𝑑 ([𝜆𝜆 − (−5.26 − 2𝐾𝐾1) −(−2.2862 − 2𝐾𝐾2)
−1 𝜆𝜆 ])  

(57) 

Simplifying (57) yields 

0 = 𝑑𝑑𝑑𝑑𝑑𝑑 ([𝜆𝜆 + 5.26 + 2𝐾𝐾1 2.2862 + 2𝐾𝐾2
−1 𝜆𝜆 ])                (5

8) 

Finding the determinant of (58) obtains 

      0 = (𝜆𝜆 + 5.26 + 2𝐾𝐾1)𝜆𝜆 − (−1 ∗ (2.2862 + 2𝐾𝐾2))     
     (59) 

Simplifying (59) obtains the characteristic equation of 
the closed-loop system expressed as 

           0 =  𝜆𝜆2 + 5.26𝜆𝜆 + 2𝐾𝐾1𝜆𝜆 + 2.2862 + 2𝐾𝐾2       (60) 

To achieve a faster rise time, the poles -2 and -6 are 
selected. These poles are known as the desired poles and is 
expressed as the desired characteristic equation 

0 = 𝜆𝜆2 + 8𝜆𝜆 + 12                               (61) 

The values for K1 and K2 are solved by equating the 
coefficients of the like terms in the closed loop and desired 
characteristic (60) and (61). The equated characteristic 
equations are expressed as 

5.26 + 2𝐾𝐾1 = 8                               (62) 

and 

2.2862 + 2𝐾𝐾2 = 12                               (63) 

Substituting the values of K1 and K2 into the gain matrix K
 yields  

𝐾𝐾 = [𝐾𝐾1 𝐾𝐾2] = [1.37 4.8569]                (64) 

Substituting the gain matrix K back into (52), the 
closed-loop A matrix is expressed as  

𝑨𝑨𝑪𝑪𝑪𝑪 = [−8 −12
1 0 ]                                 (65) 

 
The state space model of the closed-loop system with an 

FSFB controller is expressed as 

[�̇�𝜃
�̈�𝜃

] = [−8 −12
1 0 ] [𝜃𝜃

�̇�𝜃] + [2
0] 𝑢𝑢(𝑑𝑑)               (66) 

     𝑦𝑦(𝑑𝑑) = [0 1.1431] [𝜃𝜃
�̇�𝜃]                           (67) 

4. Simulink simulation 
Fig. 3 shows the actual Simulink block diagram of the 

DC motor in state space form controlled by the developed 
FSFB controller. The gain matrix K is multiplied by the 
states and the output is fed back into the control system to 
change the response.  

 
Fig. 3. Simulink block diagram of a step input to a DC motor with an FSFB controller. 

B. Integral Control 

1. Control law 
The control law for integral control is a closed-loop 

system is expressed as  

�̇�𝑥𝑖𝑖 = −𝑪𝑪𝑥𝑥(𝑑𝑑) + 𝑟𝑟(𝑑𝑑)                             (68) 

where 𝑟𝑟(𝑑𝑑) is the input to the controller and �̇�𝑥𝑖𝑖  is the input 
state of the integrator.  

 
The new control law is expressed as  

𝑢𝑢(𝑑𝑑) = −𝑲𝑲𝑥𝑥(𝑑𝑑) + 𝐾𝐾𝑖𝑖𝑥𝑥𝑖𝑖(𝑑𝑑)                             (69) 

where Ki is the integral gain xi and is the output state of the 
integrator. The state space model of the plant with FSFB 
and integral control according to the new control law is 
found by substituting (69) into (26) to obtain   

                 �̇�𝑥 = 𝑨𝑨𝑥𝑥(𝑑𝑑) + 𝑩𝑩(−𝑲𝑲𝑥𝑥(𝑑𝑑) + 𝐾𝐾𝑖𝑖𝑥𝑥𝑖𝑖(𝑑𝑑))          (70) 

Simplifying (70) yields 

                      �̇�𝑥 = (𝑨𝑨 − 𝑩𝑩𝑲𝑲)𝑥𝑥(𝑑𝑑) + 𝑩𝑩𝐾𝐾𝑖𝑖𝑥𝑥𝑖𝑖(𝑑𝑑)             (71) 

The state space model of the closed-loop system with an 
FSFB controller with integral control is expressed as 
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              [ �̇�𝑥
𝑥𝑥𝑛𝑛

] = [𝑨𝑨 − 𝑩𝑩𝑩𝑩 𝑩𝑩𝐾𝐾𝑖𝑖
−𝑪𝑪 0 ] [ 𝑥𝑥

𝑥𝑥𝑛𝑛
] + [0

1] 𝑟𝑟(𝑡𝑡)       (72) 

𝑦𝑦(𝑡𝑡) = [𝑪𝑪 0] [ 𝑥𝑥
𝑥𝑥𝑛𝑛

]                             (73) 

2. Solve for gains K and Ki 
It is necessary to find values for K and Ki to achieve the 

desired transient response of the DC motor system. This is 
done by moving the poles to desired locations. Before 
moving the poles, the characteristic equation of the closed 
loop system with FSFB and integral control must be found. 
This is done by finding the value of ACL, BCL, and C, then 
substituting these values into the state space model. ACL is 
expressed as 

      𝑨𝑨𝑪𝑪𝑪𝑪 = 𝑨𝑨 − 𝑩𝑩𝑩𝑩 = [−5.26 − 2𝐾𝐾1 −2.286 − 2𝐾𝐾2
−1 0 ]    

     (74) 

BCL is expressed as 

𝑩𝑩𝑪𝑪𝑪𝑪 =  𝑩𝑩𝐾𝐾𝑖𝑖 = [2
0] ∗ 𝐾𝐾𝑖𝑖                             (75) 

C is expressed as 

𝐶𝐶 = [0 1.1431]                             (76) 

Substituting matrices ACL, BCL and C into the state space 
model (72) and (73) yields  

[
ẋ1
ẋ2
xi

] = [
-5.26-2K1 -2.286-2K2 2Ki

1 0 0
0 1.1431 0

] [
x1
x2
xi

] + [01] r(t) 

 (77) 

The next step is to find the eigenvalues of a matrix ACL. 
Substituting ACL into (55) yields 

    0=det ([
λ 0 0
0 λ 0
0 0 λ

] - [
-5.26-2K1 -2.286-2K2 2Ki

1 0 0
0 1 0

])  

  (78) 
Simplifying (78) yields 

         0=det ([
λ+5.26+2K1 2.286+2K2 -2Ki

-1 λ 0
0 -1.1431 λ

])      (79) 

Simplifying (79) obtains the characteristic equation of 
the closed-loop system expressed as 

0 = 𝜆𝜆3 + 5.26𝜆𝜆2 + 2𝜆𝜆2𝐾𝐾1 + 2.286𝜆𝜆 + 2𝜆𝜆𝐾𝐾2 − 2.2862𝐾𝐾𝑖𝑖
         (80) 

To achieve a faster rise time, the desired poles -2, -6, 
and -8 are selected. The desired characteristic equation is 
expressed as 

0 = 𝜆𝜆3 + 16𝜆𝜆2 + 76𝜆𝜆 + 96                             (81) 

The values for K1, K2 and Ki are solved by equating the 
coefficients of the like terms of the closed loop and desired 
characteristic equations (80) and (81). The equated 
characteristic equations are expressed as 

16 = 5.26 + 2𝐾𝐾1                             (82) 

and 

76 = 2.286 + 2𝐾𝐾2                             (83) 

and 

96 = −2.2862𝐾𝐾𝑖𝑖                             (84) 

Ki is expressed as 

𝐾𝐾𝑖𝑖 = −41.9915                             (85) 

K is expressed as 

𝑩𝑩 = [ 5.37
36.8569]                             (86) 

Substituting K and Ki into (77) yields the state space 
model of the closed loop system  

[
�̇�𝜃
�̈�𝜃
𝜃𝜃𝑖𝑖

] = [
−5.26 −2.2862 0

1 0 0
0 −1.1431 0

] [
𝜃𝜃
�̇�𝜃
𝜃𝜃𝑖𝑖

] + [
2
0
0

] 𝑟𝑟(𝑡𝑡) (87) 

                   𝑦𝑦(𝑡𝑡) = [0 1.1431 0] [ 𝑥𝑥
𝑥𝑥𝑛𝑛

]                   (88) 

3. Simulink simulation 

Fig. 4 shows the Simulink block diagram of the DC 
motor controlled by the FSFB controller with integral 
control added. The gain K is multiplied by the states and 
the output is fed back into the control system to alter the 
response. The output is fed back through an integrator and 
multiplied by the gain 𝐾𝐾𝑖𝑖 . The gain 𝐾𝐾𝑖𝑖  decreases the 
steady-state error that is fed back into the system. 

 
Fig. 4. DC Motor closed-loop control system FSFB and integral control
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              [ �̇�𝑥
𝑥𝑥𝑛𝑛

] = [𝑨𝑨 − 𝑩𝑩𝑩𝑩 𝑩𝑩𝐾𝐾𝑖𝑖
−𝑪𝑪 0 ] [ 𝑥𝑥

𝑥𝑥𝑛𝑛
] + [0

1] 𝑟𝑟(𝑡𝑡)       (72) 

𝑦𝑦(𝑡𝑡) = [𝑪𝑪 0] [ 𝑥𝑥
𝑥𝑥𝑛𝑛

]                             (73) 

2. Solve for gains K and Ki 
It is necessary to find values for K and Ki to achieve the 

desired transient response of the DC motor system. This is 
done by moving the poles to desired locations. Before 
moving the poles, the characteristic equation of the closed 
loop system with FSFB and integral control must be found. 
This is done by finding the value of ACL, BCL, and C, then 
substituting these values into the state space model. ACL is 
expressed as 

      𝑨𝑨𝑪𝑪𝑪𝑪 = 𝑨𝑨 − 𝑩𝑩𝑩𝑩 = [−5.26 − 2𝐾𝐾1 −2.286 − 2𝐾𝐾2
−1 0 ]    

     (74) 

BCL is expressed as 

𝑩𝑩𝑪𝑪𝑪𝑪 =  𝑩𝑩𝐾𝐾𝑖𝑖 = [2
0] ∗ 𝐾𝐾𝑖𝑖                             (75) 

C is expressed as 

𝐶𝐶 = [0 1.1431]                             (76) 

Substituting matrices ACL, BCL and C into the state space 
model (72) and (73) yields  

[
ẋ1
ẋ2
xi

] = [
-5.26-2K1 -2.286-2K2 2Ki

1 0 0
0 1.1431 0

] [
x1
x2
xi

] + [01] r(t) 

 (77) 

The next step is to find the eigenvalues of a matrix ACL. 
Substituting ACL into (55) yields 

    0=det ([
λ 0 0
0 λ 0
0 0 λ

] - [
-5.26-2K1 -2.286-2K2 2Ki

1 0 0
0 1 0

])  

  (78) 
Simplifying (78) yields 

         0=det ([
λ+5.26+2K1 2.286+2K2 -2Ki

-1 λ 0
0 -1.1431 λ

])      (79) 

Simplifying (79) obtains the characteristic equation of 
the closed-loop system expressed as 

0 = 𝜆𝜆3 + 5.26𝜆𝜆2 + 2𝜆𝜆2𝐾𝐾1 + 2.286𝜆𝜆 + 2𝜆𝜆𝐾𝐾2 − 2.2862𝐾𝐾𝑖𝑖
         (80) 

To achieve a faster rise time, the desired poles -2, -6, 
and -8 are selected. The desired characteristic equation is 
expressed as 

0 = 𝜆𝜆3 + 16𝜆𝜆2 + 76𝜆𝜆 + 96                             (81) 

The values for K1, K2 and Ki are solved by equating the 
coefficients of the like terms of the closed loop and desired 
characteristic equations (80) and (81). The equated 
characteristic equations are expressed as 

16 = 5.26 + 2𝐾𝐾1                             (82) 

and 

76 = 2.286 + 2𝐾𝐾2                             (83) 

and 

96 = −2.2862𝐾𝐾𝑖𝑖                             (84) 

Ki is expressed as 

𝐾𝐾𝑖𝑖 = −41.9915                             (85) 

K is expressed as 

𝑩𝑩 = [ 5.37
36.8569]                             (86) 

Substituting K and Ki into (77) yields the state space 
model of the closed loop system  

[
�̇�𝜃
�̈�𝜃
𝜃𝜃𝑖𝑖

] = [
−5.26 −2.2862 0

1 0 0
0 −1.1431 0

] [
𝜃𝜃
�̇�𝜃
𝜃𝜃𝑖𝑖

] + [
2
0
0

] 𝑟𝑟(𝑡𝑡) (87) 

                   𝑦𝑦(𝑡𝑡) = [0 1.1431 0] [ 𝑥𝑥
𝑥𝑥𝑛𝑛

]                   (88) 

3. Simulink simulation 

Fig. 4 shows the Simulink block diagram of the DC 
motor controlled by the FSFB controller with integral 
control added. The gain K is multiplied by the states and 
the output is fed back into the control system to alter the 
response. The output is fed back through an integrator and 
multiplied by the gain 𝐾𝐾𝑖𝑖 . The gain 𝐾𝐾𝑖𝑖  decreases the 
steady-state error that is fed back into the system. 

 
Fig. 4. DC Motor closed-loop control system FSFB and integral control
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V. Case Study 
Four cases are discussed and compared based on the 

different system responses and characteristics. The values 
for the matrices and the gains are input in the MATLAB 
environment and referenced in Simulink as variables. The 
models are tested using a step input and analyzed using the 
scope output function.  

Case 1 describes the step response of the closed-loop 
DC motor system. Case 2 describes the step response of 
the closed-loop DC motor system with state feedback 
control. Case 3 and 4 describe the step response of the DC 
motor system with state feedback and integral control. The 
difference between cases 3 and 4 is the change in the input 
set point to compare the controller response to multiple 
inputs.  

Fig. 5 to Fig. 8 show the step input responses for cases 
1, 2, 3, and 4 respectively. In each case, the set point is 
compared to the angular position feedback of the DC 
motor. As shown, Case 1 has the slowest rise time as there 
is no addition of a controller to the system. Adding a FSFB 
controller causes Case 2 to have a faster rise time than Case 
1, but the steady-state error is huge. The addition of 
integral control to the system reduces the steady state error 
to 0 which is seen in Case 3 and 4. The output graphs of 
the four cases are developed in MATLAB. The ‘To-
Workspace’ function block is used to extract the positions 
and set points from Simulink to MATLAB to allow for 
custom plotting of the results as presented in Fig. 5 to Fig. 
8.  

Table II compares the rise time, settling time, steady-
state error and overshoot percentage of the four test cases. 
According to the results, the characteristics of the closed-
loop system are improved through controller design as 
clarified by the case studies. The results confirm that the 
FSFB controller with integral is the best controller for the 
required response of the DC motor. There is an increase in 
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Fig. 5. Step response of a closed loop DC motor System to an angular 

positional set point of 1 

 

Fig. 6. Step response of system with FSFB control to an angular 
positional set point of 1 

 

 
Fig. 7. Step response of system with FSFB and Integral Control to an 

angular positional set point of 1 

 
Fig. 8. Step response of system with FSFB and Integral Control to an 

angular positional set point of 100 
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TABLE II  
COMPARISON BETWEEN DIFFERENT DC MOTOR CONTROLLERS 

Case Description Step 
Input 

Rise 
Time 

Settling 
Time 

Steady-
state 
error 

1 

Closed loop 
system 

without a 
controller 

1  4.013s 9.164s 0 

2 Closed loop 
FSFB control 1 0.966s 2.714s 9.84 

3 

Closed loop 
FSFB with 

Integral 
control (Input 

= 1) 

1 1.244s 3.303s 0 

4 

Closed loop 
FSFB with 

Integral 
control (Input 

= 100) 

100 1.244s 3.303s 0 

 
The closed loop system with FSFB and integral control 

is evaluated using a random number generator. This test 
aims to evaluate the closed loop system’s capabilities of 
random setpoint tracking as well as to analyze the 
robustness and stability of the system. The output shown 
in Fig. 9 shows that the angular position consistently 
follows the random set points with the same response. The 
system is proven to also be stable when actuating the DC 
motor in the opposite direction as the response in Fig. 9 
shows. 

 

Fig. 9. Scope output of the FSFB controller with integral control 
response to a random number generator 

VI. Conclusion 
The electrical and mechanical components of a DC 

motor are found and combined to form the electro-
mechanical mathematical model of the system. The 
Laplace transform is used to convert the model to the 
frequency domain to allow for easier algebraic 
manipulation of equations as well as easier conversion to 
Simulink block diagrams. Placeholder variables are used 
to further reduce the complexity of the model, which helps 
when converting to the state space equations. All 
calculations are provided to make it easier to adapt the 
mathematical model to any DC motor for testing purposes. 
Only the DC motor parameters are needed to use the 
calculation procedure outlined here.  

The model is tested in four different cases. Firstly, a 
closed-loop system with encoder feedback without a 
controller is shown. In this case, the response of the system 
is very slow, and therefore a controller is needed. The 
addition of an FSFB controller reduced the rise time but 
increased the steady-state error. The controller is designed 
by converting the mathematical model to state space 
equations and then solving for the state matrix gain 𝐾𝐾 
which is used to alter the response of the system. The 
system response is simulated, and it is shown that the 
response is much faster, but the steady state error is huge. 

Integral control is added to overcome the huge steady 
state error caused by the FSFB controller. The three 
controllers are simulated and compared, and the results 
showed that the full state feedback controller with integral 
control is the optimal controller to control the angular 
position of a DC motor.  

Furthermore, the final control system is tested using a 
random input generator to test the system’s set point 
tracking, robustness, and stability. The simulated results 
show that the control system can adapt to any change in set 
point at the same response rate each time. 

The research contribution makes it easier to adapt the 
calculations to any DC motor as required. A means of 
testing the stability and robustness of the developed 
models is also provided. The future work will focus on the 
implementation of the system using a PLC environment 
and real-time implementation together with simulation.  

VII. Conflict of Interest 
The authors declare no conflict of interest in the 

publication process of the research article. 

VIII. Author Contributions 
Kevin Love conducted the research, drafted the paper, 

and analyzed the data; Nomzamo Tshemese-Mvandaba, 
reviewed, corrected, and edited the paper, and Carl Kriger 
reviewed and edited the paper; all authors approved the 
final version. 

IX. References 
[1] Maung, M. M. Latt, M. M. New, C. M. (2018) ‘DC Motor Angular 

Position Control using PID Controller with Friction 
Compensation’, International Journal of Scientific and Research 
Publications, 8(11), pp. 149-155. DOI: 10.29322/IJSRP.8.11. 2018. 
p8321. 

[2] Aloo, L. (2016) ‘DC Servomotor-based Antenna Positioning 
Control System using Hybrid PID-LQR Controller’, European 
International Journal of Science and Technology, 5(2), pp. 17-31 

[3]  Eze, P. C. Ugoh, A. C. (2021) ‘Positioning Control of DC 
Servomotor-Based Antenna Using PID Tuned Compensator’, 
Journal of Engineering Sciences, 8(1), pp. E9-E16. DOI: 
10.21272/jes.2021.8(1). e2 

[4] Ma’arif, A. Setiawan, N. R. (2021) ‘Control of DC Motor Using 
Integral State Feedback and Comparison with PID: Simulation and 
Arduino Implementation’, Journal of Robotics and Control (JRC), 
2(5), pp. 456-461. DOI: 10.181196/jrc.25122. 

[5] Venugopal, K Manoharan, S. K. Megalingam, R. K. (2022) 
‘Position Estimation in DC Motor using Strain Gauge Closed Loop 

 
International Journal of Electrical Engineering and Applied Sciences 

 

 
 
 

ISSN: 2600-7495    eISSN: 2600-9633      IJEEAS Vol. 7, No. 1, April 2024 

TABLE II  
COMPARISON BETWEEN DIFFERENT DC MOTOR CONTROLLERS 

Case Description Step 
Input 

Rise 
Time 

Settling 
Time 

Steady-
state 
error 

1 

Closed loop 
system 

without a 
controller 

1  4.013s 9.164s 0 

2 Closed loop 
FSFB control 1 0.966s 2.714s 9.84 

3 

Closed loop 
FSFB with 

Integral 
control (Input 

= 1) 

1 1.244s 3.303s 0 

4 

Closed loop 
FSFB with 

Integral 
control (Input 

= 100) 

100 1.244s 3.303s 0 

 
The closed loop system with FSFB and integral control 

is evaluated using a random number generator. This test 
aims to evaluate the closed loop system’s capabilities of 
random setpoint tracking as well as to analyze the 
robustness and stability of the system. The output shown 
in Fig. 9 shows that the angular position consistently 
follows the random set points with the same response. The 
system is proven to also be stable when actuating the DC 
motor in the opposite direction as the response in Fig. 9 
shows. 

 

Fig. 9. Scope output of the FSFB controller with integral control 
response to a random number generator 

VI. Conclusion 
The electrical and mechanical components of a DC 

motor are found and combined to form the electro-
mechanical mathematical model of the system. The 
Laplace transform is used to convert the model to the 
frequency domain to allow for easier algebraic 
manipulation of equations as well as easier conversion to 
Simulink block diagrams. Placeholder variables are used 
to further reduce the complexity of the model, which helps 
when converting to the state space equations. All 
calculations are provided to make it easier to adapt the 
mathematical model to any DC motor for testing purposes. 
Only the DC motor parameters are needed to use the 
calculation procedure outlined here.  

The model is tested in four different cases. Firstly, a 
closed-loop system with encoder feedback without a 
controller is shown. In this case, the response of the system 
is very slow, and therefore a controller is needed. The 
addition of an FSFB controller reduced the rise time but 
increased the steady-state error. The controller is designed 
by converting the mathematical model to state space 
equations and then solving for the state matrix gain 𝐾𝐾 
which is used to alter the response of the system. The 
system response is simulated, and it is shown that the 
response is much faster, but the steady state error is huge. 

Integral control is added to overcome the huge steady 
state error caused by the FSFB controller. The three 
controllers are simulated and compared, and the results 
showed that the full state feedback controller with integral 
control is the optimal controller to control the angular 
position of a DC motor.  

Furthermore, the final control system is tested using a 
random input generator to test the system’s set point 
tracking, robustness, and stability. The simulated results 
show that the control system can adapt to any change in set 
point at the same response rate each time. 

The research contribution makes it easier to adapt the 
calculations to any DC motor as required. A means of 
testing the stability and robustness of the developed 
models is also provided. The future work will focus on the 
implementation of the system using a PLC environment 
and real-time implementation together with simulation.  

VII. Conflict of Interest 
The authors declare no conflict of interest in the 

publication process of the research article. 

VIII. Author Contributions 
Kevin Love conducted the research, drafted the paper, 

and analyzed the data; Nomzamo Tshemese-Mvandaba, 
reviewed, corrected, and edited the paper, and Carl Kriger 
reviewed and edited the paper; all authors approved the 
final version. 

IX. References 
[1] Maung, M. M. Latt, M. M. New, C. M. (2018) ‘DC Motor Angular 

Position Control using PID Controller with Friction 
Compensation’, International Journal of Scientific and Research 
Publications, 8(11), pp. 149-155. DOI: 10.29322/IJSRP.8.11. 2018. 
p8321. 

[2] Aloo, L. (2016) ‘DC Servomotor-based Antenna Positioning 
Control System using Hybrid PID-LQR Controller’, European 
International Journal of Science and Technology, 5(2), pp. 17-31 

[3]  Eze, P. C. Ugoh, A. C. (2021) ‘Positioning Control of DC 
Servomotor-Based Antenna Using PID Tuned Compensator’, 
Journal of Engineering Sciences, 8(1), pp. E9-E16. DOI: 
10.21272/jes.2021.8(1). e2 

[4] Ma’arif, A. Setiawan, N. R. (2021) ‘Control of DC Motor Using 
Integral State Feedback and Comparison with PID: Simulation and 
Arduino Implementation’, Journal of Robotics and Control (JRC), 
2(5), pp. 456-461. DOI: 10.181196/jrc.25122. 

[5] Venugopal, K Manoharan, S. K. Megalingam, R. K. (2022) 
‘Position Estimation in DC Motor using Strain Gauge Closed Loop 

 
International Journal of Electrical Engineering and Applied Sciences 

 

 
 
 

ISSN: 2600-7495    eISSN: 2600-9633      IJEEAS Vol. 7, No. 1, April 2024 

TABLE II  
COMPARISON BETWEEN DIFFERENT DC MOTOR CONTROLLERS 

Case Description Step 
Input 

Rise 
Time 

Settling 
Time 

Steady-
state 
error 

1 

Closed loop 
system 

without a 
controller 

1  4.013s 9.164s 0 

2 Closed loop 
FSFB control 1 0.966s 2.714s 9.84 

3 

Closed loop 
FSFB with 

Integral 
control (Input 

= 1) 

1 1.244s 3.303s 0 

4 

Closed loop 
FSFB with 

Integral 
control (Input 

= 100) 

100 1.244s 3.303s 0 

 
The closed loop system with FSFB and integral control 

is evaluated using a random number generator. This test 
aims to evaluate the closed loop system’s capabilities of 
random setpoint tracking as well as to analyze the 
robustness and stability of the system. The output shown 
in Fig. 9 shows that the angular position consistently 
follows the random set points with the same response. The 
system is proven to also be stable when actuating the DC 
motor in the opposite direction as the response in Fig. 9 
shows. 

 

Fig. 9. Scope output of the FSFB controller with integral control 
response to a random number generator 

VI. Conclusion 
The electrical and mechanical components of a DC 

motor are found and combined to form the electro-
mechanical mathematical model of the system. The 
Laplace transform is used to convert the model to the 
frequency domain to allow for easier algebraic 
manipulation of equations as well as easier conversion to 
Simulink block diagrams. Placeholder variables are used 
to further reduce the complexity of the model, which helps 
when converting to the state space equations. All 
calculations are provided to make it easier to adapt the 
mathematical model to any DC motor for testing purposes. 
Only the DC motor parameters are needed to use the 
calculation procedure outlined here.  

The model is tested in four different cases. Firstly, a 
closed-loop system with encoder feedback without a 
controller is shown. In this case, the response of the system 
is very slow, and therefore a controller is needed. The 
addition of an FSFB controller reduced the rise time but 
increased the steady-state error. The controller is designed 
by converting the mathematical model to state space 
equations and then solving for the state matrix gain 𝐾𝐾 
which is used to alter the response of the system. The 
system response is simulated, and it is shown that the 
response is much faster, but the steady state error is huge. 

Integral control is added to overcome the huge steady 
state error caused by the FSFB controller. The three 
controllers are simulated and compared, and the results 
showed that the full state feedback controller with integral 
control is the optimal controller to control the angular 
position of a DC motor.  

Furthermore, the final control system is tested using a 
random input generator to test the system’s set point 
tracking, robustness, and stability. The simulated results 
show that the control system can adapt to any change in set 
point at the same response rate each time. 

The research contribution makes it easier to adapt the 
calculations to any DC motor as required. A means of 
testing the stability and robustness of the developed 
models is also provided. The future work will focus on the 
implementation of the system using a PLC environment 
and real-time implementation together with simulation.  

VII. Conflict of Interest 
The authors declare no conflict of interest in the 

publication process of the research article. 

VIII. Author Contributions 
Kevin Love conducted the research, drafted the paper, 

and analyzed the data; Nomzamo Tshemese-Mvandaba, 
reviewed, corrected, and edited the paper, and Carl Kriger 
reviewed and edited the paper; all authors approved the 
final version. 

IX. References 
[1] Maung, M. M. Latt, M. M. New, C. M. (2018) ‘DC Motor Angular 

Position Control using PID Controller with Friction 
Compensation’, International Journal of Scientific and Research 
Publications, 8(11), pp. 149-155. DOI: 10.29322/IJSRP.8.11. 2018. 
p8321. 

[2] Aloo, L. (2016) ‘DC Servomotor-based Antenna Positioning 
Control System using Hybrid PID-LQR Controller’, European 
International Journal of Science and Technology, 5(2), pp. 17-31 

[3]  Eze, P. C. Ugoh, A. C. (2021) ‘Positioning Control of DC 
Servomotor-Based Antenna Using PID Tuned Compensator’, 
Journal of Engineering Sciences, 8(1), pp. E9-E16. DOI: 
10.21272/jes.2021.8(1). e2 

[4] Ma’arif, A. Setiawan, N. R. (2021) ‘Control of DC Motor Using 
Integral State Feedback and Comparison with PID: Simulation and 
Arduino Implementation’, Journal of Robotics and Control (JRC), 
2(5), pp. 456-461. DOI: 10.181196/jrc.25122. 

[5] Venugopal, K Manoharan, S. K. Megalingam, R. K. (2022) 
‘Position Estimation in DC Motor using Strain Gauge Closed Loop 



ISSN: 2600 - 7495         eISSN: 2600-9633         IJEEAS,   Vol. 7,   No. 1,   April 2024

Design and Simulation of Full State Feedback Controller for DC Motor

75

Design and Simulation of Full State Feedback Controller for DC Motor 
 

 
ISSN: 2600-7495    eISSN: 2600-9633      IJEEAS Vol. 7, No. 1, April 2024 

Control for Robotic Grippers’, 2022 IEEE IAS Global Conference 
on Emerging Technologies (GlobConET), pp. 355-360, 
DOI:10.1109/GlobConET53749.2022.9872356. 

[6] Thein, M. M. Lwin, K. S. (2019) ‘Implementation of DC Motor 
Controlling Techniques’, International Journal of Science, 
Engineering and Technology Research (IJSETR), 8(7), pp. 345-
251. 

[7] Mezher, L. (2019) ‘Position Control for Dynamic DC Motor with 
Robust PID Controller using MATLAB’, International Journal of 
Advanced Trends in Computer Science and Engineering, 8(3), pp. 
936-942. DOI: 10.30534/ijatcse/2019/92832019. 

[8] Ye, N. N. Oo, K. Z. (2019) ‘Design and Implementation of PID 
Controller for Motor Position Control’, International Journal of 
Scientific & Engineering Research, 10(8), pp. 429-433.  

[9] Saaf, M. (2021) ‘Real Time DC Motor Position Control Using PID 
Controller in LabVIEW’, Journal of Robotics and Control (JRC), 
2(5), pp. 342-348, DOI:10.18196/jrc.25104. 

[10] Rahman, N. N. A. Yahya, N. M. (2021) ‘A mathematical model of 
a brushed DC motor system’, Faculty of Manufacturing and 
Mechatronic Engineering Technology, College of Engineering 
Technology, 2(2), pp. 60-68, DOI: 
https://doi.org/10.15282/daam.v2i2.6830. 

[11] Moulahcene, F. Laib, H. Merazga, A. (2022) ‘Angular Position 
Control of DC Gear-Motor Using PID Controllers for Robotic 
Arm’, International Conference on Electrical, Computer and 
Energy Technologies (ICECET 2022), pp. 1-6, 
DOI:10.1109/ICECET55527.2022.9872821. 

[12] Flores-Moran, E. Yanez-Pazmino, W. Espin-Pazmino, L. (2022) 
‘Model Predictive Control and Genetic Algorithm PID for DC 
Motor Position’, 2022 IEEE 40th Central America and Panama 
Convention (CONCAPAN), pp. 1-5, 
DOI:10.1109/CONCAPAN48024.2022.9997608. 

[13] Moradi, S. Y. Saeedi, E. (2016) ‘Controlling DC Motor Position, 
Using PID Controller Made by PIC Microcontroller’, ZANCO 
Journal of Pure and Applied Sciences, p.p 29-36, DOI: 
10.21271/zjpas.v28i2.807. 

[14] Thamir, L. (2023) ‘Performance of the Optimal Nonlinear PID 
Controller for Position Control of Antenna Azimuth Position 

System’, International Information and Engineering Technology 
Association, 10(1), pp. 366-275. DOI: 10.18280/mmep.100143. 

[15] Amini, S. Golpira, H. Bevrani, H. (2019) ‘Robust H2 and H∞ 
Controller Design for DC Position Motor Control Under 
Uncertainties’, The 6th International Conference of Control, 
Instrumentation, and Automation (ICCIA2019), pp. 1-6, 
DOI:10.1109/ICCIA49288.2019.9030972. 

[16] Shafi, S. Hamid, P. S. Nahvi, S. A. (2023) ‘Observer Based State 
Feedback Controller Design of a DC Servo Motor Using Identified 
Motor Model: An Experimental Study’, 2023 International 
Conference on Power, Instrumentation, Energy and Control 
(PIECON), pp. 1-6, DOI:10.1109/PIECON56912.2023.10085764. 

[17] Iswanto. Raharja, N. M. Ma’arif, A. Ramadhan, Y. Rosyady, P. A. 
(2021) ‘Pole Placement Based State Feedback for DC Motor 
Position Control’, Annual Conference on Science and Technology 
Research (ACOSTER) 2020. DOI: 10.1088/1742-
6596/1783/1/012057. 

[18] Pal, D. (2016) ‘Modeling, Analysis and Design of a DC Motor 
based on State Space Approach’, International Journal of 
Engineering Research & Technology (IJERT), 5(2), pp. 293-296. 
DOI: 10.17577/ijertv5is020332. 

[19] Ahmad, M. Khan, A. Raza, M, A. Ullah, S. (2018). ‘A Study of 
State Feedback controllers for Pole Placement’, 5th International 
Multi-Topic ICT Conference (IMTIC). DOI: 
10.1109/IMTIC.2018.8467276. 

[20] Nur, A. A. Rahim, A. H. M. A. (2022) ‘State feedback for DC 
Motor Position Control Based on Pole Position’. 

[21] Ohemu, M. Onuche, A. D. F. Kachalla, I. A. Zuleihat, Z. K. (2022) 
‘State-feedback Control for a DC motor Using Pole Placement 
Technique’, International Conference on Electrical Engineering 
Applications (ICEEA 2020). 

[22] Sarkar, R. (2020) Basics of DC Motor. Available at: 
https://www.electronicsforu.com/resources/dc-motor-basics 
(Accessed: 18 April 2023). 

[23] Rowell, D. (2002) ‘State-Space Representation of LTI Systems’, 
2.14 Analysis and Design of Feedback Control Systems.

 
 
 
 
 
 
 




