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Abstract – This study reports a didactic approach on how to exploit the knowledge of the 
characteristic equations of any second-order system towards their stability analysis. To prove the 
efficacy of the method in industrial applications, the manuscript focuses on the stability study of 
synchronous generators. To obtain the future-ready characteristic equation, the dynamic equation 
of a synchronous generator is modeled via the swing equation. Literally, the swing equation 
describes the behavior of the rotor dynamics in the generator. By using the characteristic equation 
at hand, dominant parameters that affect the stability are identified. The analysis studies are then 
conducted to observe the stability through multifarious allowable parameters’ range that disturb 
the roots (or the poles) location of the equation. The outcome of this research shows that two 
dominant parameters, named synchronizing coefficient and per unit inertia constant, determine the 
damping ratio and natural frequency. As a result, these two parameters affect the stability and 
transient characteristics of synchronous generators. 
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I. Introduction 

Any physical system that is linear and time-invariant 
can be modelled in either the time domain or the frequency 
domain. The dynamics of such systems are bounded in a 
class of linear time-invariant (LTI) systems if they adhere 
to the properties of linearity and time-invariant [1]. For a 
single-input-single-output system, a transfer function is 
appropriate to represent its dynamic. As such, knowing the 
ratio of the output to the input is just sufficient to represent 
its dynamic in the frequency domain, namely a transfer 
function [2], [3]. For a system having an input 𝑟𝑟(𝑡𝑡) and 
the output 𝑐𝑐(𝑡𝑡), the transfer function defines the ratio 
ℒ[𝑐𝑐(𝑡𝑡)] ℒ[𝑟𝑟(𝑡𝑡)]⁄ . Setting the denominator of the 
expression ℒ[𝑐𝑐(𝑡𝑡)] ℒ[𝑟𝑟(𝑡𝑡)]⁄  to zero yields the 
characteristic equation of the system. If the system at hand 
is represented in the state variable �̇�𝑥 = 𝐴𝐴𝑥𝑥, where the state 
𝑥𝑥 ∈ ℜ𝑛𝑛 and the matrix 𝐴𝐴 ∈ ℜ𝑛𝑛𝑛𝑛𝑛𝑛 be the 𝑛𝑛 −order system, 
the transfer function can be easily formulated as 𝐺𝐺(𝑠𝑠) =
𝐶𝐶(𝑆𝑆𝑆𝑆 − 𝐴𝐴)−1𝐵𝐵 when the system output is defined as 𝑦𝑦 =
𝐶𝐶𝑥𝑥, ∀ 𝐶𝐶 ∈ ℜ1𝑛𝑛𝑛𝑛. The knowledge of characteristic 

equations is useful to observe the stability and transient 
performance of the system. For a second-order system, the 
characteristic equation provides root behavior that reflects 
the damping factor of natural frequency. These criteria 
hence describe the transient characteristics that facilitate 
the control system or stabilizer design. 

This manuscript reports the didactic method for 
analyzing the stability and transient criteria of a 
synchronous generator through the observation of 
characteristic equations. Beforehand, the synchronous 
generator must be modelled to obtain its dynamic 
equation. In a synchronous generator, the relative motion 
between the rotor axis and the synchronously rotating 
stator field axis is helpful in analyzing stability. Any 
changes in rotor angle result in changes in real power, 
which eventually affect the operating frequency. As a 
dynamic model is essential to studying the rotor angle 
stability of a synchronous generator, the swing equation is 
exploited to reach the main research objectives. The swing 
equation serves as the basis for modelling as it represents 
the equilibrium condition between mechanical power 



ISSN: 2600 - 7495         eISSN: 2600-9633         IJEEAS,   Vol. 7,   No. 1,   April 2024

International Journal of Electrical Engineering and Applied Sciences

26

 
International Journal of Electrical Engineering and Applied Sciences 
 

 
 

ISSN: 2600-7495       eISSN: 2600-9633        IJEEAS Vol. 7, No. 1, April 2024 
 

 

from the prime mover and electrical power for the end 
user. 

There are many methods to obtain a mathematical 
model of synchronous generators. One of the established 
methods is the Park's transformation approach [4], [5]. 
The transformation is carried out to analyze the transient 
stability of 9 buses and 3 machines system. The author in 
[4] presents a detailed models of a synchronous generator 
that consists of a machine model, excitation, and prime 
mover controllers in per-unit. The methodology 
demonstrates the augmentation of an automatic generation 
control to guarantee the stability of power systems in the 
appearance of generator rotor swings. More treatment on 
automatic generation control can be found in [6], [7]. 
Instead of applying highly mathematical modeling, the 
parameters of synchronous generators can be estimated by 
using the least squares method [8], and the Taylor 
expansions approach [9]. However, the shortcoming of 
estimating the parameters incurs an insufficient 
knowledge of the transient characteristics of such 
generators. More recent research that utilizes the swing 
equation in the analysis of transient stability of 
synchronous generators can be found in [6], [10], [19], 
[20], [11]–[18]. In [11], the literature therein utilizes the 
equal area criterion method to an approximate one-
machine infinite bus system. The approach seems 
unrelaxed the high mathematical computation in the 
modelling. Whereas in [21], the swing equation is 
modelled for the purposes of transient analysis and power 
deficit estimation, respectively.  

The rest of the manuscript discusses the modeling 
concept of the swing equation, the analysis of stability and 
transient characteristics via the characteristic equation of 
the swing equation, and the analysis of research findings. 
Lastly, the outcome of the research is then concluded.  

II. Development of Swing Equation 
 The swing equation describes the behavior of the rotor 

dynamics in the generator. It is an equation describing the 
relative rotation of the rotor axis with the axis of time filed 
synchronously [22]. Whereas in [23], the author 
emphasized that this equation provides the relative 
motion, or acceleration. Both indicate the same meaning, 
where this equation shows the electromechanical 
oscillations or dynamics in a power system. In this phase, 
the swing equation is formulated based on the law of 
rotation in a synchronous generator, as depicted in Fig. 1 
[24] . 

From Newton’s Second Law of Rotation, 𝑇𝑇 = 𝐽𝐽𝐽𝐽, the 
swing equation governs the motion of the rotor by the 
combined moment inertia, 𝐽𝐽 of prime mover and generator 
with respect to rotor acceleration, 𝐽𝐽. The dynamic of the 
synchronous generator can be presented as follows [25]: 

 
                           𝐽𝐽 𝑑𝑑2𝛿𝛿𝑚𝑚

𝑑𝑑𝑡𝑡2 = 𝑇𝑇𝑚𝑚 − 𝑇𝑇𝑒𝑒                       (1) 

 
Fig. 1. Synchronous generator – Concept of torque balance 

Rotor acceleration, 𝐽𝐽, is the second derivative of rotor 
angular displacement, 𝜃𝜃𝑚𝑚 = 𝜔𝜔𝑠𝑠𝑚𝑚𝑡𝑡 + 𝛿𝛿𝑚𝑚, with respect to 
the stationary reference axis on the stator, as shown in Fig. 
2. 

 

 

Fig. 2. Rotor angular displacement 

Multiplying torque by rotor speed, 𝜔𝜔𝑚𝑚, produces 
power; as such, the swing equation in (1) can be 
represented in terms of power as in (2). 𝐽𝐽𝜔𝜔𝑚𝑚 is known as 
inertia constant denoted as 𝑀𝑀, thus the swing equation is 
written in terms of inertia constant as in (3). 

 
 𝐽𝐽𝜔𝜔𝑚𝑚

𝑑𝑑2𝛿𝛿𝑚𝑚
𝑑𝑑𝑡𝑡2 = 𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑒𝑒  (1) 

 
 𝑀𝑀 𝑑𝑑2𝛿𝛿𝑚𝑚

𝑑𝑑𝑡𝑡2 = 𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑒𝑒    (2) 
 
The inertia constant, 𝑀𝑀 is related to the kinetic energy 

of rotating masses, 𝑊𝑊𝑘𝑘, by 
𝑀𝑀 = 2𝑊𝑊𝑘𝑘 𝜔𝜔𝑚𝑚⁄  . M is not really constant since the rotor 
speed may vary from synchronous speed. Due to the fact 
that rotor speed, 𝜔𝜔𝑚𝑚 does not differ significantly from 
synchronous speed, 𝜔𝜔𝑠𝑠𝑚𝑚 when the generator is stable, 𝑀𝑀 
is considered to remain constant and evaluated at 
synchronous speed as 𝑀𝑀 = 2𝑊𝑊𝑘𝑘 𝜔𝜔𝑠𝑠𝑠𝑠⁄ . The swing 
equation in (3) is more convenient to be written in terms 
of electrical power angle, 𝛿𝛿 as: 

 
 2

𝑝𝑝 𝑀𝑀 𝑑𝑑2𝛿𝛿
𝑑𝑑𝑡𝑡2 = 𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑒𝑒  (3) 
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in which 𝑝𝑝 is number of poles and electrical power angle, 
𝛿𝛿, is correlated to mechanical power angle, 𝛿𝛿𝑚𝑚 , by 𝛿𝛿 =
𝑝𝑝
2 𝛿𝛿𝑚𝑚 ⟹  𝛿𝛿𝑚𝑚 = 2𝛿𝛿

𝑝𝑝 . Conventionally, power system analysis 
is conducted in per unit system, thus, the swing equation 
is expressed as: 

 
 2

𝑝𝑝 ( 2𝑊𝑊𝑘𝑘
𝜔𝜔𝑠𝑠𝑠𝑠𝑆𝑆𝐵𝐵

) 𝑑𝑑2𝛿𝛿
𝑑𝑑𝑡𝑡2 = 𝑃𝑃𝑠𝑠

𝑆𝑆𝐵𝐵
− 𝑃𝑃𝑒𝑒

𝑆𝑆𝐵𝐵
 (4) 

 
In stability studies, another important constant is the 

per unit inertia constant, 𝐻𝐻, which is defined as the ratio 
of kinetic energy stored at rated speed in 𝑀𝑀𝑀𝑀 to the 
generator rating in 𝑀𝑀𝑀𝑀𝑀𝑀 or expressed by 𝐻𝐻 = 𝑊𝑊𝑘𝑘 𝑆𝑆𝐵𝐵⁄ . The 
value of 𝐻𝐻 is in the range of 1 to 10 seconds, depending 
on the size and type of the machine. Substituting 𝐻𝐻 into 
(5) renders: 

 
 2

𝑝𝑝
2𝐻𝐻

𝜔𝜔𝑠𝑠𝑠𝑠

𝑑𝑑2𝛿𝛿
𝑑𝑑𝑡𝑡2 = 𝑃𝑃𝑚𝑚(𝑝𝑝𝑝𝑝) − 𝑃𝑃𝑒𝑒(𝑝𝑝𝑝𝑝) (5) 

 
where 𝑃𝑃𝑚𝑚(𝑝𝑝𝑝𝑝) and 𝑃𝑃𝑒𝑒(𝑝𝑝𝑝𝑝) are the per unit mechanical power 
and per unit electrical power, respectively. The 𝑝𝑝𝑝𝑝 in (6) 
is omitted to simplify the notation. Electrical velocity and 
mechanical angular velocity are related by 𝜔𝜔𝑠𝑠𝑚𝑚 =
(2 𝑝𝑝⁄ )𝜔𝜔𝑠𝑠 . Thus, (6) can be expressed in terms of electrical 
angular velocity, frequency, and electrical degree as in (7), 
(8) and (9), respectively. 

 
 2𝐻𝐻

𝜔𝜔𝑠𝑠

𝑑𝑑2𝛿𝛿
𝑑𝑑𝑡𝑡2 = 𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑒𝑒 (6) 

 
 𝐻𝐻

𝜋𝜋𝑓𝑓0

𝑑𝑑2𝛿𝛿
𝑑𝑑𝑡𝑡2 = 𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑒𝑒  , 𝛿𝛿 in electrical radian  (7) 

 
 𝐻𝐻

180𝑓𝑓0

𝑑𝑑2𝛿𝛿
𝑑𝑑𝑡𝑡2 = 𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑒𝑒, 𝛿𝛿 in electrical degrees  (8) 

III. Analysis of Stability 
In order to conduct stability analysis, a single machine 

connected to an infinite bus is considered. The single 
machine is a three-phase, non-salient, two-pole rotor of a 
synchronous generator. According to [26] his model is 
very representative of power system and is widely used in 
power system distribution simulation. The machine’s 
output electrical power is expressed as: 
 
 

𝑃𝑃𝑒𝑒 = |𝐸𝐸′||𝑉𝑉|
𝑋𝑋12

sin 𝛿𝛿        (9) 
 

Equation (10) shows that the electrical power 
produced depends on the transfer reactance, 𝑋𝑋12, and the 
angle between the two voltages, which also the called 
rotor angle, 𝛿𝛿. The relation can be expressed by a power 
angle curve, as shown in Fig. 3. 

 

 

Fig. 3. Power angle curve 
 

The curve shows that the generator power output can 
be gradually increased until maximum power, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, is 
transferred. According to [25], the maximum power, 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, 
which is referred to as the steady-state stability limit, 
occurs at an angular displacement of 90° is expressed as 
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = |𝐸𝐸′||𝑉𝑉|

𝑋𝑋12
. Electrical power output, 𝑃𝑃𝑒𝑒 will decrease 

from 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 point if the rotor angle, 𝛿𝛿, is advanced further 
by further increasing the shaft input. The electrical power 
equation in terms of 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 is  𝑃𝑃𝑒𝑒 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 sin 𝛿𝛿.  

The electrical power equation is substituted into (8), 
renders (11) such that the analysis of stability can be 
performed. 

 
 𝐻𝐻

𝜋𝜋𝑓𝑓0

𝑑𝑑2𝛿𝛿
𝑑𝑑𝑡𝑡2 = 𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 sin 𝛿𝛿 (10) 

 
The swing equation is a nonlinear function of the 

power angle. Consider the deviation, ∆𝛿𝛿, in power angle 
from initial operating point, 𝛿𝛿0, that is 𝛿𝛿 = 𝛿𝛿0 + ∆𝛿𝛿, the 
swing equation becomes 

𝐻𝐻
𝜋𝜋𝑓𝑓0

𝑑𝑑2𝛿𝛿0+∆𝛿𝛿
𝑑𝑑𝑡𝑡2 = 𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 sin(𝛿𝛿0 + ∆𝛿𝛿)  

𝐻𝐻
𝜋𝜋𝑓𝑓0

𝑑𝑑2𝛿𝛿0
𝑑𝑑𝑡𝑡2 + 𝐻𝐻

𝜋𝜋𝑓𝑓0

𝑑𝑑2∆𝛿𝛿
𝑑𝑑𝑡𝑡2 = 𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚(sin 𝛿𝛿0 cos ∆𝛿𝛿 +

                                                cos 𝛿𝛿0 sin ∆𝛿𝛿)  (11) 

In obtaining the characteristic equation of the swing 
equation, nonlinear swing equation (12) is linearized by 
assuming the rotor deviation, ∆𝛿𝛿, is very small, which 
leads to cos ∆𝛿𝛿 ≈ 1 𝑎𝑎𝑎𝑎𝑎𝑎 sin ∆𝛿𝛿 ≈ ∆𝛿𝛿. Hence, (12) is 
simplified as: 

 
𝐻𝐻

𝜋𝜋𝑓𝑓0

𝑑𝑑2𝛿𝛿0
𝑑𝑑𝑡𝑡2 + 𝐻𝐻

𝜋𝜋𝑓𝑓0

𝑑𝑑2∆𝛿𝛿
𝑑𝑑𝑡𝑡2 = 𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 sin 𝛿𝛿0 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 cos 𝛿𝛿0∆𝛿𝛿  

  (12) 
 
By comparing (13) to (11), the linearized equation in 
incremental changes in power angle is described as: 

 
     𝐻𝐻

𝜋𝜋𝑓𝑓0

𝑑𝑑2∆𝛿𝛿
𝑑𝑑𝑡𝑡2 = −𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 cos 𝛿𝛿0∆𝛿𝛿      (13) 
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Note that 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 cos 𝛿𝛿0 is the slope of the curve in the power 
angle graph at 𝛿𝛿0, which also known as the synchronizing 
coefficient, denotes by 𝑃𝑃𝑠𝑠, (14) is rewritten as: 
 
      𝐻𝐻

𝜋𝜋𝑓𝑓0
𝑑𝑑2∆𝛿𝛿
𝑑𝑑𝑡𝑡2 + 𝑃𝑃𝑠𝑠∆𝛿𝛿 = 0       (14) 

 
Taking Laplace transform of (15), 
 

ℒ { 𝐻𝐻𝜋𝜋𝑓𝑓0
𝑑𝑑2∆𝛿𝛿
𝑑𝑑𝑡𝑡2 } + ℒ{𝑃𝑃𝑠𝑠∆𝛿𝛿} = 0 

𝐻𝐻
𝜋𝜋𝑓𝑓0

𝑠𝑠2Δ𝛿𝛿(𝑠𝑠) + 𝑃𝑃𝑠𝑠∆𝛿𝛿(𝑠𝑠) = 0 
 

[ 𝐻𝐻𝜋𝜋𝑓𝑓0
𝑠𝑠2 + 𝑃𝑃𝑠𝑠]Δ𝛿𝛿(𝑠𝑠) = 0 

 
Hence, the root locations of the linearized equation are 

as in (16). 
𝑠𝑠2 = −𝜋𝜋𝑓𝑓0

𝐻𝐻 𝑃𝑃𝑠𝑠         (15) 
 
Further analysis conducted by adding damping power 

to (16) renders (17). The damping power is an important 
function that minimizes the difference between the two 
angular velocities, thus damping out the oscillation of the 
transient response [27], [28]. Damping power is 
approximately proportional to the speed deviation.  

 
𝐻𝐻
𝜋𝜋𝑓𝑓0

𝑑𝑑2∆𝛿𝛿
𝑑𝑑𝑡𝑡2 + 𝐷𝐷 𝑑𝑑∆𝛿𝛿

𝑑𝑑𝑡𝑡 + 𝑃𝑃𝑠𝑠∆𝛿𝛿 = 0     (16) 
 
In terms of standards characteristic equation, 𝑑𝑑

2∆𝛿𝛿
𝑑𝑑𝑡𝑡2 +

2𝜁𝜁𝜔𝜔𝑛𝑛
𝑑𝑑∆𝛿𝛿
𝑑𝑑𝑡𝑡 + 𝜔𝜔𝑛𝑛

2∆𝛿𝛿 = 0, (17) can be expressed as: 
 

   𝑑𝑑2∆𝛿𝛿
𝑑𝑑𝑡𝑡2 + 𝜋𝜋𝑓𝑓0

𝐻𝐻 𝐷𝐷 𝑑𝑑∆𝛿𝛿
𝑑𝑑𝑡𝑡 +

𝜋𝜋𝑓𝑓0
𝐻𝐻 𝑃𝑃𝑠𝑠∆𝛿𝛿 = 0      (17) 

 
Thus, natural frequency and damping ratio are derived as: 
 

  Natural frequency, 𝜔𝜔𝑛𝑛 = √𝜋𝜋𝑓𝑓0
𝐻𝐻 𝑃𝑃𝑠𝑠      (18) 

  Damping ratio, 𝜁𝜁 = 𝐷𝐷
2 √

𝜋𝜋𝑓𝑓0
𝐻𝐻𝑃𝑃𝑠𝑠

< 1       (19) 

 
The damping ratio is required to be less than 1 or 

underdamped; as such, the response will oscillate through 
equilibrium and ensure the system reaches the desired end 
state with some overshoot. It is observed that there exist 
two dominant parameters, known as the synchronizing 
coefficient, 𝑃𝑃𝑠𝑠, and the inertia constant, 𝐻𝐻, that determine 
the pole’s location, natural frequency and damping ratio.  

 

IV. Simulation Result and Discussion 
This section validates the dominant parameters effect 

on stability and transient characteristics via simulation. 
The simulation is carried out in a MATLAB/Simulink 
environment. 

The test is conducted for the synchronizing coefficient, 
𝑃𝑃𝑠𝑠, with values of 1 and -1. When the value of 𝑃𝑃𝑠𝑠 is -1 
(negative), there exists only one pole on the right half of 
the s-plane, which causes the response to be exponentially 
increased and hence lose stability, as shown in graph of 
rotor angle deviation and frequency response in Fig. 4(a) 
and (b), respectively. When the value of 𝑃𝑃𝑠𝑠  is 1 (positive), 
there exist two poles on the 𝑗𝑗𝜔𝜔-axis with oscillatory and 
undamped motion. Thus, the system is said to be 
marginally stable. The transient response of rotor angle 
deviation and frequency is as shown in Fig. 5(a) and (b), 
respectively. This result shows that 𝑃𝑃𝑠𝑠 affects the root 
location as well as the stability of the system. 

 

 
(a) 

 
(b) 

Fig. 4. Transient response when 𝑃𝑃𝑠𝑠 = −1 
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(a) 

 
(b) 

Fig. 5.  Transient response when 𝑃𝑃𝑠𝑠 = 1 
 

The following test is conducted with damping power 
added to the linearized swing equation. Fig. 6 and Fig. 7 
show the transient responses of rotor angle deviation and 
frequency, respectively, when the value of 𝐻𝐻 is varied 
(𝐻𝐻 = 3,5,7,9) . When 𝐻𝐻 increased, the natural frequency 
and damping ratio are decreased, which results in a longer 
settling time. The increment of 𝐻𝐻  results in a transient 
response that becomes less steep and more damped. This 
proves that 𝐻𝐻 is significantly affects the transient 
response. 

 

 

Fig. 6. Transient response of rotor angle deviation when H = 3,5,7,9  
 

 
Fig. 7. Transient response of frequency when H = 3,5,7,9 

V. Conclusion 
This study reports the stability analysis of the 

characteristic equation for second-order system of a 
synchronous generator. The simulation result shows the 
synchronizing coefficient, 𝑃𝑃𝑠𝑠 affects the root location as 
well as the stability of the system. Furthermore, adding 
damping power to the swing equation results in 
underdamped oscillation and improved stability. The 
increment of the inertia constant, 𝐻𝐻 shows a varies 
transient response with less steep and more damp. As a 
conclusion, the synchronizing coefficient, 𝑃𝑃𝑠𝑠 and inertia 
constant, 𝐻𝐻 affect the transient characteristic and stability 
of the synchronous generator. 
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