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Abstract – The enhancement of metaheuristic algorithms has been considered an important step 
in improving the solution quality of systems. In this paper, a modification to the traditional 
Gorilla Troop optimizer is proposed. The modification leverages the powerful properties of circle 
chaotic mapping and step adaptive simulation. The conventional algorithm, while effective in 
certain scenarios, exhibits limitations in handling complex and dynamically changing data sets. 
To address these shortcomings, a three-fold approach is proposed to enhance its performance. A 
circle chaotic mapping is integrated into the algorithm's initialization phase to enhance its 
sensitivity to initial conditions. The chaotic mapping effectively diversifies the search space, 
facilitating improved exploration and convergence to optimal solutions. Secondly, a step 
adaptive simulation is introduced as a means to dynamically adjust the simulation steps during 
runtime. Finally, the concept of adaptive simulation based on the state of the silverback gorilla 
(best solution) in the troop is used to simulate the exploitation phase to help the ASGTO 
overcome local optima entrapment and produce better solutions. The performance of the 
proposed ASGTO was assessed on twenty-two benchmark optimization functions and compared 
with the standard GTO, grey wolf optimizer (GWO), and whale optimization algorithm (WOA). 
The results showed that the proposed ASGTO outperformed the standard GTO, GWO, and WOA. 
ASGTO, GTO, GWO, and WOA attained global optimum values for 82%, 77%, 55%, and 59% of 
the 22 benchmark functions respectively. Consequently, the modified algorithm exhibits 
robustness and adaptability, making it applicable across various domains. The ASGTO is 
therefore recommended for adoption in solving optimization problems.    
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I. Introduction 

Metaheuristic algorithms have become widely 
acclaimed and exceptionally beneficial for addressing a 
myriad of optimization challenges, they have 
accumulated immense favour across industries. Their 
versatility and efficacy make them a top choice for 
professionals in various domains in recent times, due to 
the inability of traditional mathematical methods such as 
estimation methods, linear programming, etc. to solve 
complex practical problems [1]. They have found 
extensive applications across diverse fields, including 
but not limited to: medicine, engineering, etc. to solve 
patient classification problems, optimization of 

systems,[2] etc. Unlike heuristic algorithms, 
metaheuristic algorithms are generic in nature, making 
them adaptable for a multitude of distinct optimization 
problems. However, the stochastic search mechanism of 
these algorithms, while powerful and versatile, do not 
provide a guarantee of locating the absolute best solution 
with one kind of algorithm, in one try, for every 
optimization problem [3]. Therefore, researchers are 
tirelessly putting in much effort to develop more 
accurate, efficient, and robust algorithms to obtain 
excellent global optimal solutions to complex real-world 
problems.  

Generally, metaheuristic algorithms are nature-
inspired or based on natural phenomena and physical 
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processes. They have been categorized into swarm 
intelligent algorithms, bio-inspired algorithms, physics 
and chemistry-based algorithms, and evolutionary 
algorithms [4]. Although numerous metaheuristic 
algorithms, exemplified by the likes of particle swarm 
optimization (PSO) [5], firefly algorithm [6], and 
differentiation evolution (DE) algorithm [7] Spotted 
Hyena Optimizer Algorithm (SHO) [8], Cuckoo Search 
Algorithm [9], Reptile Search Algorithm (RSA) [10]. 
Sine Cosine Algorithm [11], Harmony Search [12] have 
proven their effectiveness in tackling complex 
optimization problems, there is still a need for new and 
accurate algorithms due to the common issue of slow 
convergence, inaccurate results, local optima 
entrapment, etc. in the existing algorithms. Again, 
researchers are also working tirelessly to improve the 
general performances of the existing algorithms 
through, for example, hybridization of algorithms, and 
application of theories such as opposition-based 
learning, fuzzy systems, and rough set theory. These 
efforts are being made due to the need to address 
intricate large-scale ever-changing optimization 
problems efficiently and with speed. 

Gorilla Troop Optimizer (GTO), a social group 
intelligence algorithm, drawing inspiration from the 
collective behavior of gorillas in a troop has proven to be 
an excellent competitor amongst the existing 
metaheuristic algorithms and has particularly performed 
exceptionally well when compared to popular algorithms  
of swarm intelligence, like the Grey Wolf Optimizer 
(GWO), Particle Swarm Optimization (PSO), Whale 
Optimization Algorithm (WOA), and Moth-Flame 
Optimization, (MFO), on various benchmark 
optimization functions [1]. The GTO has also been 
applied in the resolution of multifaceted energy-related 
problems [8]. In [13], GTO was applied to extract 
Photovoltaic (PV) parameters of single-diode and 
double-diode models which are critical for accurately 
representing the behaviour of photovoltaic (PV) cells 
and modules. Also, in [14] GTO was used for tunning 
TID based power system stabilizer to optimise its 
stability, ensuring the reliability and consistent 
functioning of the power system. To enhance the 
performance of the GTO further and also deal with the 
inherent problem of convergence inaccuracy and 
instability during solving complex problems, an 
improvement has been suggested in [15], In the work, 
circle chaotic mapping is used to facilitate diversity 
amongst the population and improve global search in 
GTO and opposition-based learning was employed to 
expand the search ranges of the gorillas to help avoid 

local optima entrapment. In [2] a fusion strategy for 
controlling shrinkage is introduced to broaden the 
exploration of the search space and mitigate search 
limitations. This approach enhances interaction between 
silverback gorillas and other members of the group, 
leading to improved global optimization performance. 
Regardless of these introductions into the GTO, it still 
suffers from entrapment in local optima for certain 
complex problems and inaccurate results. Hence, further 
novel ideas are needed to further improve the algorithm 
GTO. 

This work presents a novel adaptive simulated gorilla 
troop optimizer (ASGTO) based on the concept of 
adaptive simulation. This proposition aims to address 
the prevalent issue of local optima entrapment and 
inaccurate results. To achieve this, an adaptive 
simulation is introduced into the exploitation phase of 
the GTO which simulates gorilla’s behaviours based on 
the current state of the silverback (best solution) in the 
troop. This helps the GTO to reach convergence faster 
and produce accurate results. Also, a circle chaotic 
mapping is integrated into the algorithm's initialization 
phase, which imbues the system with enhanced 
sensitivity to initial conditions. The chaotic mapping 
effectively diversifies the search space, facilitating 
improved exploration and convergence to optimal 
solutions. Consequently, the modified algorithm exhibits 
heightened robustness and adaptability, rendering it 
suitable for applications across various domains. we also 
introduce step adaptive simulation as a means to 
dynamically adjust the simulation steps during runtime. 
By dynamically tuning the step size, the algorithm 
adapts its precision according to the complexity of the 
problem, effectively conserving computational resources 
without compromising accuracy. This innovation not 
only accelerates convergence in less intricate regions but 
also ensures precise convergence in areas where fine-
grained exploration is critical. 

II. Artificial Gorilla Troop Optimizer 
The concept of Artificial Gorilla Troop Optimization 

(GTO) simulates the social group behaviors observed in 
gorillas. The algorithm simulates five unique 
characteristics of the gorillas in a troop. These are; the 
migration of gorillas to uncharted territories, their 
movement towards fellow gorillas, their migration to 
familiar locations, and their tendency to follow the lead 
of the silverback gorilla (best gorilla in the troop), and 
competition by matured males for adult females. These 
collectively constitute the exploration and exploitation 
aspects of the optimization process. The metaheuristic 
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process of GTO for attaining optimum solution is guided 
by a set of rules. These rules are elaborated below. 
The solution space is made up of three different 
solutions. These are, X  as current position vector of 
gorilla, GX  as candidate position vectors are created 
during each phase of the GTO. GX  operates when its 
value surpasses that of the current solution and 

silverbackX  represent the global solution after each 
iteration. 
- In the search process, only one gorilla becomes a 

silverback. 
- During every iteration of the search procedure, a 

solution GX  is created. If GX is better than the 
current solution X , GX it replaces X it. Otherwise, 
the solution remains in the memory GX . 

- In the GTO, a search process is assumed to start with 
the worst solution (weakest member of the group) 
and gradually move towards the best solution 
(silverback) thereby improving the positions of all 
other gorillas. 

A. Exploration Phase 

Within the exploration phase, three methods are 
employed to simulate the behaviour of the gorillas. 
These are; movement to an undiscovered area, a 
movement towards a discovered area in the search space, 
and movement to other gorillas. The first movement 
ensures effective monitoring of the entire problem search 
space; the second movement is designed to explore the 
search space, whereas the third prevents the GTO from 
getting trapped in local optima. In the search process, all 
gorillas are considered as a candidate solution in each 
optimization stage, the best gorilla is designated as the 
silverback. These mechanisms are simulated randomly. 

 
-  Gorillas move to an undiscovered area when a 

variable p r and position update of gorilla is done 
according to equation (1).  

- The mechanism of movement towards other gorillas 
is activated when, update of position is done using 
equation (2), 

- Movement towards a discovered area is activated 
when, and update of gorilla position is done 
according to equation (3). 
 

1

2 1

1 3 2

( ) ,
( 1) ( ) ( ) ( ), 0.5

( ) ( ( ( ) ( ) ( ( ) ( )), 0.5

ub lb r lb r p
GX t r C X t L Z X t r

X t L L X t X t r X t X t r

   
       
        

 

                    (1)-(3) 
where,  ,Z C C  . 

In the equations above with the first line representing  

(1)-(3), ( 1)GX t  is the candidate position vector of 
gorilla in the subsequent t  iterations, ( )X t is the 

current position vector of gorilla, 1 2 3, , ,r r r r  are random 

numbers within  0,1  .The variable p  is set at the 

initialization stage and has a value within  0,1  . It is 
employed to select which amongst the three mechanisms 
highlighted above must operate. ub and lb are 
respectively the upper and lower boundaries of the 
variables of the problems being solved. 1X  and 2X are 
random gorilla and vector of gorilla candidate position 
respectively. The variables C and L  are calculated 
using equation (4) and (5) respectively. 

B. Exploitation phase 

In the exploitation phase, the gorillas search within 
their own search space based on two behaviors; gorillas 
follow silverback gorilla who is the best solution in the 
troop or male gorillas compete amongst themselves for 
adult females. In the search process of GTO, selection of 
either of the two behaviors is randomly simulated with 
variables  C and W , where C is defined according to 
equation (4) and W is a number between 0 and 1 chosen 
at the initialization of the GTO.  

 

           1 tC F
MaxIter

    
 

                   (4) 

                   L C l                                                   
(5) 

                    4cos 2 1F r    

The variable 4r  represent a random number 

within  0,1 , t  is a random number of the range  [ 1,1] , 
t  signifies the current iteration and MaxIter represent 
the maximum number of iterations to be executed. The 
rules for choosing either of the two behaviours using C  
and W are as follows;  

 
Follow Silverback 

Gorillas begin to follow the silverback when C W . 
This behaviour is exhibited when the silverback is 
young, healthy and strong to lead the troop, make 
decisions, determine the groups movement and direct 
the troop towards a potential food source. In this state of 
the silverback, members of the troop follow the 
silverback well and obey instructions from the 
silverback. This is simulated according to equation (6). 
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where 

1

1

1 ( )
g gN

i
i

M GX t
N 

 
 
 
 
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Male gorillas compete for female 

    Male gorillas compete or fight amongst themselves 
for females when C W .This occurs when young 
gorillas grow up and become stronger. The fight is 
violent and may last for many days. This behaviour is 
simulated with equation (7). 

 
( ) ( ( ) )silverback silverbackGX i X X Q X t Q A       (7) 

52 1Q r    
A E   

1

2

, 0.5
, 0.5

N rand
E

N rand


  
 

 
In equation (7) , Q represent the impact force with 

which the male gorillas compete, 5r is a random number 

between  0,1 , A  is a coefficient vector meant to 
determine the degree of violence in the fight amongst 
the gorillas. Again,   is parameter selected in the 
initialization of the algorithm and E is a parameter used 
to simulate the impact of violence on the dimensions of 
solutions. The exploitation phase of the GTO algorithm 
is completed with group formation where, the cost 
associated with all GX  solutions is determined and 
compared to cost of X . At an iteration t , 
where ( ) ( )GX t X t , ( )GX t  replaces ( )X t solution. 
Again, the best solution amongst the gorillas of the GTO 
population at iteration t   becomes the silverback.  The 
implementation of the GTO algorithm is shown in the 
flowchart in Fig.1. 

Start

Initialize circle chaotic mapping of gorillas in problem 
space and Set parameters Pop, T,β,p,a,b 

Evaluate gorillas fitness

t T

Update the a, C using 
Equation (2,4) 

   i   Pop

Update  position of the gorilla using 
Equation 1,2,3,11

Calculate the fitness values of Gorilla and if New solutions 
are better than previous solutions replace them

Set best solution as the location of silverback (best 
location)

J   Pop

C   W

Update position of the 
gorilla using Equation 7

Update position of the 
gorilla using Equation6, 9

Calculate the fitness values of Gorilla and if New solutions are better than 
previous solutions replace them

Set best solution as the location of 
silverback (best location)

Return First best 
gorilla

Stop

YES

NO

NO

YES

NO

YES

YES NO

Exploitation Phase

Exploration Phase

 
Fig. 1. Flowchart of algorithm implementation 

 
 
 
 
 

III. Proposed Modification 
The three proposed modifications are presented 

below. 

A. Circle Chaotic Mapping Initialisation 

Inspired by the work done in [15], circle chaotic 
mapping is utilized to improve the quality of the initial 
population. Chaotic mapping is a technique used in 
nonlinear systems that possess properties such as 
unpredictability, ergodicity, and randomness. Chaotic 
mapping is preferred over random distribution since it 
allows individuals within the initial population to 
facilitates a comprehensive exploration of the solution 
space, resulting in increased convergence speed and 
sensitivity. the initial population. Compared to 
commonly used Tent chaotic mapping and Logistic 
chaotic mapping, chaotic mapping is a widely accepted 
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strategy for enhancing optimization performance. To 
further enhance population diversity and leverage the 
solution space information, the circle chaotic mapping 
technique is incorporated to improve the initialization 
process of the original GTO. The mathematical 
representation of the circle chaotic mapping technique is 
provided below in equation 8. 

    1 .sin(2 ) mod(1), (0,1)
2k k k k
az z b z z
             (8) 

0.5a  , 0.2b   

B. Adaptive simulation 

In gorilla troop optimization (GTO), a global solution 
is achieved by both exploitation and exploration of the 
search space. This is achieved by randomly simulating 
the mechanisms that define the behaviours of the 
gorillas. The numerous mechanisms in the algorithm 
help it to achieve a better performance compared to 
other algorithms. Regardless of the performance of the 
GTO it still suffers from slower convergence and local 
optima entrapment in solving optimization problems. 
These deficiencies must be addressed which requires 
improvement. In this work, a novel adaptive simulated 
gorilla troop optimization is introduced which modifies 
the exploitation phase of the GTO. In the exploitation 
search process, GTO exploits two important 
mechanisms; follow silverback gorilla or male gorillas 
compete amongst themselves for females. These 
predominantly depends on the behaviour of silverback 
gorilla and are simulated randomly with variable C  and 
W in the implementation of GTO. In this work, a new 
adaptive simulation is introduced to simulate the two 
mechanisms based on the state and behaviour of the 
silverback in the troop. This is done using equations (9) 
and (10). The proposed simulation leverages the state of 
the silverback gorilla and the search space in the 
exploitation phase to decide which of the two 
mechanisms gets to operate, rather than random 
simulation. In the proposed adaptive simulation, gorillas 
follow the silverback when C S  and adult males 
gorillas compete for females when C S . Hence the two 
mechanisms are simulated adaptively based on the 
valuof C and S . 

 

max max min
cos( ( ) 1)( ) ( )
cos( ( ) 1)

K tS t S S S
K t


   


                (9) 

         ( ) 1( )
( ) 1

fitness silverbackK t
fitness silverback





                     (10) 

In equation (9), maxS   and minS are maximum and 

minimum weights that determine the extent of 
silverback’s behaviour at every iteration t . In this 
modification, maxS and minS are chosen as 0.9 and 0.1 
respectively, cos is the cosine function which reduces 
the effect of sudden changes of gorilla’s behaviour over 
the course of iterations. The pseudocode of the new 
proposed algorithm is given below. 

C. Self-adaptive and dynamic step-size 

In the standard GTO updating formula, the random 
step typically involves a random number vector (Z) 
drawn from a uniform, Gaussian, or other distribution. 
However, this approach can lead to individual gorillas 
becoming trapped in local optima during the updating 
process, particularly for high-dimensional test functions 
where random turbulence can occur and slow down 
convergence. Consequently, the algorithm may fail to 
converge to an optimal value. To tackle this problem, a 
step modification factor  is introduced to address any 
decrease in optimization accuracy in the standard GTO 
when the search dimension of an individual gorilla 
increases. This modification aims to enhance the 
algorithm's ability to handle higher-dimensional 
optimization problems effectively.     

 
                       ( / )D t TT e                      (11) 

 
t  represents the current iteration, T  represent the 
largest iteration D denotes the dimension of an 
individual gorillas, and     [0,1]. In this research, 
 = 0.1. In the operation of the algorithm, As the search 
dimension of an individual gorilla or the iteration 
number increases, the random step size undergoes a 
reduction. By diminishing the step size, the algorithm 
promotes a more focused exploration of the solution 
space, enabling the gorilla to navigate with greater 
precision and efficiency in higher-dimensional spaces or 
as the optimization process advances. This adaptive step 
size modulation optimizes the balance between 
exploration and exploitation for improved convergence 
towards optimal solutions. 

IV. Experimental Setup For Testing the 
Proposed Modification 

The effectiveness and accuracy of the proposed 
ASGTO were checked by testing it on 22 benchmark 
optimization functions in the literature. These functions 
consist of 10 unimodal and 12 multimodal functions, 
chosen for their varied complexity. Some details of the 
functions are listed in Table I. The proposed ASGTO 
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was compared to the original GTO, grey wolf optimizer 
(GWO) and whale optimization algorithm. Table I 
shows the simulation parameters used for the various 
algorithms. All algorithms were run on the same 
computer, for all the functions. The specifications of the 
computer used are; Intel Core TM i7-10750 with CPU of 
2.60 GHz and 16.0GB RAM and windows-based 
operating system. For each algorithm, first five separate 
runs were done for, each at 1000 iterations, and the 
following were recorded. The comparison is done on the 
basis of mean of best run, standard deviation of best run, 
global optimum, and average of global optimum of all 
runs. 
 

TABLE I 
SIMULATION DETAILS OF BENCHMARK OFTIMIZATION 

SN Function 
Name 

Search 
Range 

Optimum 
Value Dimension 

F1 Ackley [-32,32] 0 2 

F2 Beale [-4.5,4.5] 0 2 

F3 
Cross-in-

Tray [-10,10] −2.06261218 2 

F4 
Dekkers-

Aarts [-20,20] −24771.09375 2 

F5 Easom  [-100,100] -1 2 

F6 
Goldstein-

Price [-2,2] 3 2 

F7 Happy Cat  [-2,2] 0 2 

F9 
Matyas 

Function [-10,10] 0 2 

F10 Powell Sum  [-1,1] 0 50 

F11 
Quartic 
Function [-1.28,1.28] 0 50 

F12 Rosenbrock [-5,10] 0 50 

F13 
Branin 

function [-5, 10] 0..397887 2 

F14 Drop wave [-10,10] 0 4 

F15 Eggholder [-512,512] -959.6407 10 

F16 Griewank [-600,600] 0 4 

F17 Michalewicz [0, Π] -9.66 10 

F18 
Rotated 
hyper 

ellipsoid 

[-
65.536,65.53] 0 10 

F19 Schwefel [-500,500] 0 10 

F20 Shubert [-10,10] -186.73 10 

F21 Sphere [-5.2,5.2] 0 10 

F22 
Cross-in-

Tray [-1,1] 0 2 

 
 

TABLE II 
SIMULATION PARAMETERS OF ALGORITHMS 

Algorithm Parameter Value 

GTO 

Max. no. iterations 
W  
  
 
 

1000 
0.8 
0.03 

 

ASGTO 

 
       Max. no. iterations 

W  
  

maxS  

minS  

 
 
 

 
1000 
0.8 
0.01 
0.9 

 
0.1 

GWO 
Max. no. of generations 
Convergence constant a  

 

1000 
[0,2] 

 
 

   
   

WOA 
Max. no. of generations 
Convergence constant a  

Spiral factor b  

1000 
[0,2] 

1 

V. Results and Discussions 
A. Comparison of Global Optimum Values of Best Run 

 Table III compares results of the global optimum 
values of the best run obtained by ASGTO, GTO, GWO 
and WOA. It should be noted that, the best values are 
boldened. Comparing the globally optimum values of the 
benchmark functions to that obtained by ASGTO, the 
proposed ASGTO was able to attain the global optimum 
for eighteen (18) functions (F2, F3, F4, F5, F6, F8, F9, 
F11, F12, F13, F15, F17, F20, F21 and F22). However, 
the ASGTO could not attain the global optimum of 
functions F1, F7, F10 and F18 however the global 
optimum values attained were close to the expected 
values of the benchmark functions. On the other hand, 
GTO attained the global optimum of seventeen (17) 
functions excluding F1, F7, F10, F18 and F16 which it 
could not attain the expected values. Again, GWO was 
able to attain the exact optimum values for twelve (12) 
of the functions (F3, F4, F5, F6, F8, F9, F12, F13, F14, 
F17, F1 and F21) and could not attain the global 
optimum for the other ten (10) functions. Finally, WOA 
attained the global optimum value for thirteen (13) of 
the benchmark functions (F3, F4, F5, F6, F8, F9, F12, 
F13, F14, F15, F17, F19 and F21) and could not attain 
for nine (9) functions.  

From the above discussions, ASGTO, GTO, GWO 
and WOA attained global optimum value for 82%, 77%, 
55% and 59% of the 22 benchmark functions 
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respectively. Again, ASGTO had the minimum optimum 
value for functions F7 and F10 and attained the same 
global optimum with GTO, GWO, WOA for F1. This 
clearly shows that, the proposed ASGTO outperformed 
the four (4) other algorithms in terms of attainment of 
global optimum values. 

B. Mean and Standard Deviation of Best Run 

Table IV compares results of the mean and standard 
deviation of convergence values of the best run amongst 
the five (5) separate runs. Here, the mean values are 
expected to be close to the global optimum values of the 
functions and the standard deviations are expected to be 
small as possible. This shows the consistency of the 
algorithms in attaining the global optimum values of the 
benchmark functions. From the table, ASGTO obtained 
the minimum mean and standard deviation values for 
fifteen (15) of the benchmark functions (F1, F2, F3, F5, 
F6, F10, F11, F12, F13, F14, F15, F16, F17, F20 and 
F21) representing 68% of the 22 functions. On the other 
hand, GTO, GWO and WOA had the minimum mean 
and standard deviation values for five (5), three (3) and 
one (1) representing 23%, 14% and 1% of the 22 
benchmark functions respectively. However, ASGTO 
had a minimum mean for F16 and WOA had the 
minimum standard deviation for F16. It should be noted 
that the best values have been boldened.  From the above 
discussion, it is clear that the proposed ASGTO was very 
consistent in attaining the global optimum of the 
functions and on this basis, the best algorithm in terms 
of mean and standard deviation of the best run. 

C. Average of Global Optimum Values of all Runs 

    Table V compares the performances of ASGTO. 
GTO. GWO, WOA in terms of the average of global 
optimum values of all the five separate runs. This is 
meant to demonstrate the searchability of the algorithms 
to produce similar optimum values for each separate run. 
ASGTO and GTO were very consistent by producing 
average values same as the global optimal values of F1, 
F3, F4, F5, F6, F8, F9, F11, F12, F13, F14, F15, F17, 
F19, F20, F21 and F22 representing about 77% of the 22 
benchmark functions. GWO also showed some level of 
consistency in attaining the global optimum values for 
the five separate runs by producing average values same 
as that of functions F3, F4, F5, F6, F8, F9, F12, F13, 
F14, F17, F18 and F21. This represents about 55% of 
the 22 benchmark functions. On the other hand, WOA 
showed the least level of consistency in searching for the 
global optimum values of the benchmark functions. It 
was able to attain average values same as the global 
optimum values of functions F3, F4, F6, F8, F9, F12, 

F14, F15, F17, F19 and F21 representing about 50% of 
the 22 benchmark functions. For functions F1, F7, F10, 
F16 and F18 which neither ASGTO nor GTO could 
attain average values same as their global optimum 
values, ASGTO had the closest average values for F7 
and F10 whilst GTO had the closest for F16 and F18. 
All four algorithms had the same average value for 
function F1.  Again, based on the discussion above, the 
proposed ASGTO has shown consistent and competitive 
performance to GTO, GWO and WOA. 

D. Interval Plot of Convergence Values of Best Run 

The interval plots of the benchmark functions are shown 
in Fig. 2 to Fig. 23. These are used to compare means of 
convergence values of the best run for each algorithm for 
95% confidence interval (CI). It is also used to compare  
means of convergence values of the best run for each 
algorithm for 95% confidence interval (CI). It is also 
used to compare the variations in the convergence values 
of the algorithms and how consistent each was in 
attaining the optimum values of each benchmark 
function. The ASGTO showed significantly lowest 
variation in convergence values (optimum values) in the 
interval plot for all functions confirming its improved 
consistency and accuracy in attaining the convergence 
values. GTO also showed a low level of variations in all 
functions except for functions F1, F2, F4, F5, F6, F12 
and F15 which it exhibited some high level of 
variations. On the other hand, GWO and WOA showed 
a very high variation in attaining the convergence values 
for almost all the functions except F4, F7, F8, F9, F16, 
F17 and F18. Both GWO and WOA showed very low 
level of variation in the interval plots for functions F7, 
F16, F17 and F18.  Singularly, GWO showed low level 
of variation in functions F8 and F9 whilst WOA showed 
low level of variation in F4. Clearly, ASGTO is the 
better algorithm with consistency and low variation in 
the convergence values for the benchmark value, 
because the range of confidence interval or standard 
deviation of ASGTO for all 22 runs are significantly 
lower than the other three algorithms.the variations in 
the convergence values of the algorithms and how 
consistent each was in attaining the optimum values of 
each benchmark function. The ASGTO showed 
significantly lowest variation in convergence values 
(optimum values) in the interval plot for all functions 
confirming its improved consistency and accuracy in 
attaining the convergence values. GTO also showed a 
low level of variations in all functions except for 
functions F1, F2, F4, F5, F6, F12 and F15 which it 
exhibited some high level of variations. On the other 
hand, GWO and WOA showed a very high variation in 
attaining the convergence values for almost all the 
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functions except F4, F7, F8, F9, F16, F17 and F18. Both 
GWO and WOA showed very low level of variation in 
the interval plots for functions F7, F16, F17 and F18.  
Singularly, GWO showed low level of variation in 
functions F8 and F9 whilst WOA showed low level of 
variation in F4. Clearly, ASGTO is the better algorithm 

with consistency and low variation in the convergence 
values for the benchmark value, because the range of 
confidence interval or standard deviation of ASGTO for 
all 22 runs are significantly lower than the other three 
algorithms. 

 
 

TABLE III 
COMPARISON OF GLOBAL OPTIMUM VALUE OF BEST RUN 

SN  Optimum value ASGTO GTO GWO WOA 

F1  0 -8.88E-16 -8.88E-16 -8.88E-16 -8.88E-16 

F2  0 0.00E+00 0.00E+00 2.73E-10 3.16E-16 

F3  −2.06261218 -2.06E+00 -2.06E+00 -2.06E+00 -2.06E+00 

F4  −24771.09375 -2.48E+04 -2.48E+04 -2.48E+04 -2.48E+04 

F5  -1 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 

F6  3 3.00E+00 3.00E+00 3.00E+00 3.00E+00 

F7  0 2.75E-07 9.27E-06 1.84E-06 1.14E-01 

F8  0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F9  0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F10  0 6.69E-07 2.33E-05 1.69E-04 2.55E-05 

F11  0 0.00E+00 0.00E+00 1.06E-07 1.30E-11 

F12  0..397887 3.98E-01 3.98E-01 3.98E-01 3.98E-01 

F13  0 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 

F14  -959.6407 -9.60E+02 -9.60E+02 -9.60E+02 -9.60E+02 

F15  0 0.00E+00 0.00E+00 1.23E-02 0.00E+00 

F16  -9.66 -9.57E+00 -9.28E+00 -8.32E+00 -8.07E+00 

F17  0 2.36E+05 2.36E+05 2.36E+05 2.36E+05 

F18  0 1.44E-04 1.27E-04 1.43E+03 9.23E-03 

F19  -186.73 -1.87E+02 -1.87E+02 -1.87E+02 -1.87E+02 

F20  0 0.00E+00 0.00E+00 1.04E-186 6.49E-214 

F21  0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
F22  0 0.00E+00 0.00E+00 1.18E-180 4.67E-20 

 
 

TABLE IV 
COMPARISON OF RESULTS OF BEST RUN 

SN  Optimum value  ASGTO GTO GWO WOA 

F1  
Mean 
SD 

 

 5.26E-04 
7.64E-03 

2.16E-03 
2.58E-02 

1.15E-02 
1.77E-01 

2.24E-02 
2.75E-01 

F2  
Mean 
SD 

 

 7.16E-06 
1.16E-04 

1.77E-03 
2.30E-02 

3.28E-04 
7.38E-03 

9.07E-04 
2.71E-02 

F3  
Mean 
SD 

 

 -2.06E+00 
7.24E-06 

-2.06E+00 
9.72E-06 

-2.06E+00 
1.09E-04 

-2.06E+00 
2.53E-04 

F4  
Mean 
SD 

 

 -2.48E+04 
9.88E+00 

-2.47E+04 
3.37E+02 

-2.47E+04 
3.37E+02 

-2.47E+04 
9.16E+00 

F5  
Mean 
SD 

 

 -9.99E-01 
4.60E-03 

-9.87E-01 
4.51E-01 

-9.96E-01 
5.57E-02 

9.71E-01 
6.43E-02 

F6  Mean 
SD 

 3.00E+00 
1.03E-04 

3.00E+00 
2.58E-02 

3.00E+00 
7.39E-02 

3.01E+00 
1.88E-01 
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F7  
Mean 
SD 

 

 9.02E-03 
5.26E-02 

6.59E-03 
4.41E-02 

6.20E-04 
5.93E-03 

1.21E-01 
3.98E-02 

F8  
Mean 
SD 

 

 1.21E-06 
2.28E-05 

3.95E-07 
5.32E-06 

2.10E-06 
4.09E-05 

3.54E-05 
1.08E-03 

F9  
Mean 
SD 

 

 2.29E-168 
0.00E+00 

1.07E-164 
0.00E+00 

1.25E-184 
0.00E+00 

3.19E-145 
7.14E-144 

F10  
Mean 
SD 

 

 1.40E-03 
1.18E-02 

2.05E-03 
3.20E-02 

1.48E+00 
1.75E+01 

8.62E-01 
1.35E+01 

F11  
Mean 
SD 

 

 1.13E-04 
2.93E-03 

3.23E-04 
3.15E-03 

2.16E-03 
3.69E-02 

2.37E-03 
7.27E-02 

F12  
Mean 
SD 

 

 3.98E-01 
8.75E-04 

3.98E-01 
3.88E-03 

3.99E-01 
3.08E-03 

3.98E-01 
2.52E-03 

F13  
Mean 
SD 

 

 -1.00E-01 
3.34E-04 

-1.00E-01 
4.19E-04 

-1.00E-01 
2.93E-03 

-9.99E-01 
1.08E-02 

F14  
Mean 
SD 

 

 -9.60E+02 
1.98E-02 

-9.59E+02 
6.45E-01 

 

-9.59E+02 
6.76E+00 

-9.59E+02 
1.27E+01 

F15  
Mean 
SD 

 

 2.96E-03 
4.53E-02 

6.13E-03 
7.65E-02 

4.22E-02 
6.12E-01 

7.96E-02 
4.63E-01 

F16  
Mean 
SD 

 

 -9.37E+00 
6.89E-01 

-9.02E+00 
7.36E-01 

-5.91E+00 
1.12E+00 

-7.83E+00 
5.60E-01 

F17  
Mean 
SD 

 

 2.36E+05 
1.78E-09 

2.36E+05 
1.78E-09 

2.36E+05 
1.78E-09 

2.36E+05 
1.78E-09 

F18  
Mean 
SD 

 

 1.38E+01 
1.54E+02 

3.69E+00 
6.94E+01 

1.73E+03 
2.29E+02 

4.48E+01 
2.08E+02 

F19  
Mean 
SD 

 

 -1.87E+02 
2.52E-01 

-1.87E+02 
2.34E-01 

-1.87E+02 
2.08E+00 

-1.87E+02 
3.29E+00 

F20  
Mean 
SD 

 

 2.13E-07 
1.57E-06 

3.31E-04 
6.07E-03 

5.39E-02 
1.02E+00 

1.09E-01 
1.71E+00 

F21  
Mean 
SD 

 

 1.48E-08 
1.86E-07 

1.21E-07 
1.43E-06 

    5.98E-07 
1.52E-05 

1.34E-06 
3.84E-05 

F22  Mean 
SD 

 1.58E-03 
2.51E-02 

2.76E-04 
2.34E-03 

1.92E+01 
3.34E+02 

1.82E+01 
3.04E+02 

 
 

TABLE V 
COMPARISON OF AVERAGE OF GLOBAL OPTIMUM VALUES OF ALL RUNS 

SN  ASGTO GTO GWO WOA 

F1  -8.88E-16 -8.88E-16 -8.88E-16 5.33E-16 

F2  0.00E+00 0.00E+00 3.89E-09 5.44E-14 

F3  -2.06E+00 -2.06E+00 -2.06E+00 -2.06E+00 

F4  -2.48E+04 -2.48E+04 -2.48E+04 -2.48E+04 

F5  -1.00E+00 -1.00E+00 -1.00E+00 -2.48E+04 

F6  3.00E+00 3.00E+00 3.00E+00 3.00E+00 

F7  4.28E-06 3.78E-05 4.83E-06 2.04E-01 

F8  0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F9  0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F10  5.39E-06 2.63E-05 4.17E-04 1.12E-03 
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F11  0.00E+00 0.00E+00 4.17E-04 5.49E-09 

F12  3.98E-01 3.98E-01 3.98E-01 3.98E-01 

F13  -1.00E+00 -1.00E+00 -1.00E+00 -9.87E-01 

F14  -9.60E+02 -9.60E+02 -9.60E+02 -9.60E+02 

F15  0.00E+00 0.00E+00 4.46E-03 0.00E+00 

F16  -8.23E+00 -8.79E+00 -7.26E+00 -7.35E+00 

F17  2.36E+05 2.36E+05 2.36E+05 2.36E+05 

F18  2.86E-04 1.27E-04 1.14E+03 7.36E+02 

F19  -1.87E+02 -1.87E+02 -1.87E+02 -1.87E+02 

F20  0.00E+00 0.00E+00 3.10E-178 1.35E-207 

F21  0.00E+00 0.00E+00 0.00E+00 0.00E+00 
F22  0.00E+00 0.00E+00 7.30E-179 9.79E-205 

 
 

 
 

Fig. 2. Interval Plot of Convergence for Ackley (F1) 
 

 
Fig. 3. Interval Plot of Convergence for Beale (F2) 

 
Fig. 4. Interval Plot of Convergence for Cross-in-Tray (F3) 
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Fig. 5. Interval Plot of Convergence for Dekkers-Aarts (F4) 

 
Fig. 6. Interval Plot of Convergence for Easom(F5) 

 

 
Fig. 7. Interval Plot of Convergence for Goldstein-Price (F6) 

 
Fig. 8. Interval Plot of Convergence for Happy Cat (F7) 

 
  

 
Fig. 9. Interval Plot of Convergence for Matyas Function (F8) 
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Fig. 5. Interval Plot of Convergence for Dekkers-Aarts (F4) 

 
Fig. 6. Interval Plot of Convergence for Easom(F5) 

 

 
Fig. 7. Interval Plot of Convergence for Goldstein-Price (F6) 
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Fig. 9. Interval Plot of Convergence for Matyas Function (F8) 
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Fig. 10. Interval Plot of Convergence for Powell Sum (F9) 

 
Fig. 11. Interval Plot of Convergence for Quartic Function (F10) 

 
Fig. 12. Interval Plot of Convergence for Rosenbrock (F11) 
 

 
Fig. 13. Interval Plot of Convergence for Branin function (F12) 

 
Fig. 14. Interval Plot of Convergence for Drop wave (F13) 
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Fig. 15. Interval Plot of Convergence for Eggholder (F14) 

 
 

 
Fig. 16. Interval Plot of Convergence for Griewank (F15) 

 
 

 
Fig. 17. Interval Plot of Convergence for Michalewicz (F16) 

 
Fig. 18. Interval Plot of Convergence for Rotated hyper ellipsoid (F17) 
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Fig. 19. Interval Plot of Convergence for Schwefel (F18) 
 
 

 
Fig. 20. Interval Plot of Convergence for Shubert (F19) 

 
Fig. 21. Interval Plot of Convergence for Sphere (F20) 

 
Fig. 22. Interval Plot of Convergence for Sum of difference (F21) 

 
Fig. 23. Interval Plot of Convergence for Sum square (F22) 

VI. Conclusion 
A novel modification to the artificial gorilla troop 

optimizer (GTO) has been proposed to improve its 
performance. The modified version of the GTO is named 
adaptive simulated gorilla troop optimizer (ASGTO). An 
adaptive simulation based on the current state of the best 
gorilla (silverback) in the troop is proposed in the 
exploration phase of the GTO to help it overcome the 
problem of local optima entrapment and also improve its 
optimal solutions. The proposed ASGTO has been 
compared with well know algorithms in the literature; 
grey wolf optimizer (GWO), whale optimization 
algorithm (WOA) and the GTO using twenty-two 
benchmark optimization functions. The performance of 
the algorithms is assessed in terms of global optimum 
value of best run, mean of best run, the standard 
deviation of best run, average of optimum value of all 
runs and interval plot of convergence values of the best 
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run to show the statistical difference in performance 
between the algorithms. The results obtained shows 
clearly that, the proposed ASGTO outperformed GTO, 
GWO and WOA in about 82% of the 22 benchmark 
functions in terms of global optimal value, 68% in 
reference to the mean and standard deviation of best run 
and 77% in relation to the average of optimum values of 
all runs. The ASGTO also showed the lowest variation 
in convergence values of the best run for all functions. 
This indicates a significant improvement in the GTO 
and the ability of the ASGTO to avoid local optima 
entrapment. The proposed ASGTO is recommended for 
use by researchers to solve optimization problems in 
diverse fields due to its excellent performance. The 
ASGTO is currently being used to solve optimal 
capacitor placement problems in the electrical 
distribution system. 
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run to show the statistical difference in performance 
between the algorithms. The results obtained shows 
clearly that, the proposed ASGTO outperformed GTO, 
GWO and WOA in about 82% of the 22 benchmark 
functions in terms of global optimal value, 68% in 
reference to the mean and standard deviation of best run 
and 77% in relation to the average of optimum values of 
all runs. The ASGTO also showed the lowest variation 
in convergence values of the best run for all functions. 
This indicates a significant improvement in the GTO 
and the ability of the ASGTO to avoid local optima 
entrapment. The proposed ASGTO is recommended for 
use by researchers to solve optimization problems in 
diverse fields due to its excellent performance. The 
ASGTO is currently being used to solve optimal 
capacitor placement problems in the electrical 
distribution system. 
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run to show the statistical difference in performance 
between the algorithms. The results obtained shows 
clearly that, the proposed ASGTO outperformed GTO, 
GWO and WOA in about 82% of the 22 benchmark 
functions in terms of global optimal value, 68% in 
reference to the mean and standard deviation of best run 
and 77% in relation to the average of optimum values of 
all runs. The ASGTO also showed the lowest variation 
in convergence values of the best run for all functions. 
This indicates a significant improvement in the GTO 
and the ability of the ASGTO to avoid local optima 
entrapment. The proposed ASGTO is recommended for 
use by researchers to solve optimization problems in 
diverse fields due to its excellent performance. The 
ASGTO is currently being used to solve optimal 
capacitor placement problems in the electrical 
distribution system. 
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Fig. 19. Interval Plot of Convergence for Schwefel (F18) 
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Fig. 22. Interval Plot of Convergence for Sum of difference (F21) 

 
Fig. 23. Interval Plot of Convergence for Sum square (F22) 

VI. Conclusion 
A novel modification to the artificial gorilla troop 

optimizer (GTO) has been proposed to improve its 
performance. The modified version of the GTO is named 
adaptive simulated gorilla troop optimizer (ASGTO). An 
adaptive simulation based on the current state of the best 
gorilla (silverback) in the troop is proposed in the 
exploration phase of the GTO to help it overcome the 
problem of local optima entrapment and also improve its 
optimal solutions. The proposed ASGTO has been 
compared with well know algorithms in the literature; 
grey wolf optimizer (GWO), whale optimization 
algorithm (WOA) and the GTO using twenty-two 
benchmark optimization functions. The performance of 
the algorithms is assessed in terms of global optimum 
value of best run, mean of best run, the standard 
deviation of best run, average of optimum value of all 
runs and interval plot of convergence values of the best 


