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Abstract – Shelf stocking in retail warehouses requires high accuracy, multitasking, and precise 
timing. Automating the process has become a popular solution due to difficulty in facing continuous 
demand in replenishing items at shelves. The traditional path planning, Rapid-exploring Random 
Tree (RRT) approach is inefficient and produce suboptimal path generation when it comes to 
complex workspaces such as retail warehouse. Furthermore, the simple linear interpolation method 
used for robotic arm manipulation can result in jerky, unrealistic motion, and collisions with 
obstacles. To address these issues, the Transition-based Rapidly-exploring Random Tree Star 
(TRRT) is proposed to achieve the shortest distance in shelving items at warehouse. The study also 
implements inverse kinematics algorithms for smooth arm manipulation. In this study, the TRRT is 
constructed in CoppeliaSim software using the OMPL Library as well as Inverse Kinematics (IK) 
algorithms. The results show that the TRRT approach generates shorter paths than the RRT 
approach but takes longer calculation time. Moreover, the TRRT approach demonstrates a good 
repetition result compared to the RRT approach. Furthermore, the accuracy percentage between 
the joints angle obtained from CoppeliaSim and the IK calculation in MATLAB reaches 99.27%. In 
conclusion, the TRRT approach and inverse kinematics algorithms improve the efficiency and 
smoothness of the object arrangement path planning robot, making it a viable solution for 
automating the shelf-stocking process in retail warehouses. 
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I. Introduction 

Shelf stocking in retail warehouses and stores is a 
challenging task for robotic applications. The 
advancement of manufacturing and software technologies 
has led to a significant increase in the use of robotics in 
retail in recent years [1]-[2]. However, despite recent 
advancements in visual processing and robot manipulation 
technologies, humans are still required for shelf-related 
jobs such as shelf picking and replenishment due to their 
adaptability and dependability [1], [3]. Therefore, there is 
growing interest in developing robotic systems capable of 
shelf replenishment manipulation, as demonstrated by 
initiatives such as the Amazon Robotic Challenge (ARC) 
and Amazon Picking Challenge (APC), which promote 
autonomous robotic manipulations in the chaotic 
surroundings of warehouses [4]. 

 

Retail replenishment requires multitasking, accuracy, 
and impeccable timing, which necessitates a lot of human 
resources. Efficient shelf replenishment methods are 
crucial for ensuring that products are correctly arranged on 
shelves, as poor arrangement can lead to decreased sales. 
In the retail warehouse or store, shelf replenishment is an 
essential role that requires a lot of manual effort by store 
employees, especially for large companies like Amazon 
that have thousands of objects to replenish on the shelves 
every day [3], [5]. Shelf replenishment is undoubtedly the 
most time-consuming activity, with 50% of the time spent 
locating the proper spot on the shelf [6]. As a result, it is 
expensive and inefficient, requiring a lot of human 
resources and time. Furthermore, the task is repetitive and 
tedious, leading to errors and shelf storage without getting 
fully utilized. There is also a shortage of labor in the 
warehouse due to its continuous expansion. 

To make the shelf replenishment process more efficient, 
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growing interest in developing robotic systems capable of 
shelf replenishment manipulation, as demonstrated by 
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autonomous robotic manipulations in the chaotic 
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Retail replenishment requires multitasking, accuracy, 
and impeccable timing, which necessitates a lot of human 
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this study proposes the design of object arrangement path 
planning robot for retail warehouses that can run smoothly 
and take the shortest manipulation arrangement path. For 
example, the TX SCARA Robot was currently used in 
Family Mart in Japan, but it can only restock a limited 
number of beverage bottles and cans in a cylindrical shape 
from the refrigerated store to the refrigerator rack. 
Additionally, it does not have a mobile base to carry 
objects, making it unsuitable for the long distances 
required in a retail warehouse environment [7]. 

Currently, the RRT algorithm is extensively utilized in 
the realm of robot path planning [8]. However, the 
traditional RRT algorithm tends to suffer from reduced 
calculation efficiency in complex workspaces, and the 
generation of suboptimal paths that may take a long time 
to reach due to its reliance on randomness and heuristic 
techniques. The long and convoluted paths generated are 
computationally intensive, particularly in environments 
such as large warehouses or stores with a high number of 
items to be arranged. This significantly increases the 
overall time and resources required for the object 
replenishment process, making it less efficient and less 
cost-effective [9]. 

Moreover, some of the robot's joint angles are 
calculated using a simple linear interpolation method, 
which can lead to jerky, unrealistic motion, compromising 
the precision and smoothness of the robotic arm's 
movement. It can also cause the robot to collide with 
obstacles in its environment, potentially damaging its 
structure and affecting its functionality. Linear 
interpolation may be limited in accuracy as it does not 
account for nonlinearities in the robot's joint dynamics, 
such as joint limits and singularities, which can further 
degrade the robotic arm's motion [10]-[11]. 

The inefficiencies of the traditional RRT algorithm in 
complex workspaces and the limitations of linear 
interpolation for calculating robot joint angles have led 
researchers to explore alternative methods for robot path 
planning. In the context of object arrangement path 
planning in retail warehouse environments, two crucial 
aspects are the object arrangement strategy and motion 
planning approach. Therefore, in recent years, researchers 
have proposed different methods to address these aspects 
and improve the efficiency and accuracy of robot path 
planning in such environments. 

Abdo et al. [12] proposed a collaborative filtering-
based method for arranging objects on shelves and in 
boxes by predicting pairwise preferences between objects 
and maximizing user preferences. However, this method 
relies heavily on user preferences, which may not always 
be practical in a busy retail warehouse environment. 
Furthermore, the method may not be suitable for complex 
and cluttered environments, where there are many objects 
and limited space for arranging them. Other than that, 

Jiang et al. [13] proposed a supervised learning approach 
that considers stacking of objects, stability, object-area 
relationship, and common placing constraints. Although 
this approach addresses various criteria for object 
arrangement, it requires a large amount of training data 
and may not be suitable for real-time processing. 
Furthermore, it may not be able to handle unexpected 
situations, such as sudden changes in the environment or 
the addition of new objects. Furthermore, Kang et al. [14] 
proposed an approach that utilizes hierarchical, spatial, 
and pairwise relationships to arrange cluttered objects. 
This approach improves object placement using extracted 
connections and ergonomic criteria, such as visibility and 
accessibility. However, the approach requires the prior 
identification of object connections and may not be 
effective for environments with constantly changing 
objects and layouts. 

For motion planning, researchers have proposed 
different methods to improve the performance of 
traditional RRT. RRT-Connect, RRT*, TRRT, and Hybrid 
RRT-PRM are all variants method of the Rapidly-
exploring Random Tree (RRT) algorithm, which is a 
widely used approach for robot path planning in complex 
environments. While the traditional RRT algorithm suffers 
from reduced calculation efficiency and may generate 
suboptimal paths, these variants aim to overcome these 
limitations and improve the performance of the algorithm 
[15]-[18]. 

RRT-Connect was introduced by Kuffner  [9], [19] as 
an extension of the original RRT algorithm, with the main 
improvement being the addition of a second tree that 
grows from the goal configuration towards the start 
configuration. By connecting these two trees, RRT-
Connect can generate a feasible path more efficiently and 
with higher success rates than the traditional RRT 
algorithm. 

RRT* is another extension of RRT that was introduced 
by Karaman and Frazzoli [20]-[23]. This algorithm 
improves the path quality by using a re-wiring step that 
iteratively re-connects nodes to improve the path quality. 
By continuously improving the path quality, RRT* 
generates higher quality paths compared to traditional 
RRT. 

TRRT, or Transition-based RRT, is a further 
improvement over RRT* that aims to reduce the 
computational cost by using local optimization techniques 
[24],[25]. TRRT achieves this by focusing on the 
transitions between nodes rather than the nodes 
themselves and using a local planner to optimize these 
transitions. This allows for more efficient exploration of 
the search space and results in faster convergence towards 
optimal solutions. One of the benefits of this approach is 
that it can improve the quality of the path by reducing its 
length. By optimizing the transitions between nodes, 
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TRRT can generate smoother and shorter paths compared 
to traditional RRT. This can be particularly useful in retail 
warehouse environments where efficient use of space is 
essential and shorter paths can lead to faster and more 
efficient object handling. 

Hybrid Rapidly-exploring Random Tree (RRT)-
Probabilistic Roadmap (PRM) technique is a novel 
approach to motion planning in robotics. The Hybrid RRT-
PRM technique combines two sampling-based algorithms, 
RRT and PRM, to generate shorter paths in a given 
configuration space [26]. RRT explores the configuration 
space by constructing a tree of random samples, while 
PRM plans for multiple paths by building a roadmap of 
the free space. By leveraging the strengths of both 
algorithms, the Hybrid RRT-PRM technique can generate 
shorter paths more efficiently compared to RRT and PRM. 

In this study, inspired from Kang et al. [14] approach 
that focused on spatial aspect in robotic manipulation and 
Transition-based RRT was used to develop the object 
arrangement path planning robot in a retail warehouse 
environment. Then, in order to achieve accurate and 
smooth object arrangement manipulation, inverse 
kinematics was used as well for the UR5 Cobot 
movement. With this, the main contribution of this study 
is to provide the performance analysis of the proposed 
TRRT object arrangement path planning in the 
environment of warehouse structure using CoppeliaSim 
compared to RRT approach.  

The overall organization of the study is as follows. 
Section 2 covers the theoretical aspect of RRT and TRRT 
approach. Section 3 explains the methodology of the 
study, Section 4 describes experimental result and 
discussion. Lastly, section 5 concludes the study and the 
future directions. 

II. Path Planning Approaches 

A. Rapidly-exploring Random Tree (RRT) 

The Rapidly-exploring Random Tree (RRT) algorithm 
[15]-[18] is widely-used method for exploring high-
dimensional free space while searching for low-cost paths. 
However, due to its inherent random nature, the paths 
generated by the traditional RRT algorithm can be 
suboptimal and lack systematicity. To address this 
limitation, an enhanced variant called Transition-based 
RRT (T-RRT) is introduced, which incorporates 
additional mechanisms to guide the search towards low-
cost regions and produce paths that closely adhere to 
minimal work paths. 

The RRT algorithm initiates with an initial state and 
proceeds iteratively by adding new states to a tree 
structure until either a goal state is reached, or a maximum 
number of iterations is reached. During each iteration, the 

algorithm randomly samples a new state within the search 
space. This sampled state is then connected to the existing 
tree by finding the nearest node in the tree. This 
connection creates a new edge in the tree, which represents 
a potential path from the nearest node to the newly 
sampled state.  

In order to ensure the feasibility of the path, the 
algorithm performs collision checks to verify if the newly 
created path collides with any obstacles in the 
environment. Additionally, the algorithm may incorporate 
other constraints, such as velocity or acceleration bounds, 
to further refine the feasibility of the path. If the path 
satisfies all constraints and is collision-free, the newly 
sampled state is added to the tree, expanding the 
exploration of the search space, and the process continues. 

The traditional RRT algorithm is effective at exploring 
arbitrary search spaces and finding feasible paths through 
complex obstacles, provided that a feasible path exists 
within the given configuration space. However, due to its 
random nature, the paths generated by the RRT algorithm 
can lack systematicity and be suboptimal in terms of cost 
or other metrics. The illustration results of RRT algorithm 
shown in Fig. 1(a). 

To address these limitations, the T-RRT algorithm is 
introduced. T-RRT builds upon the foundation of the RRT 
algorithm but incorporates additional mechanisms to bias 
the search towards low-cost regions and generate paths 
that closely align with minimal work paths. By doing so, 
T-RRT aims to improve the efficiency and optimality of 
the path planning process. 

B. Transition-based Rapidly-exploring Random Tree 
(TRRT) 

The Transition-based Rapidly-exploring Random Tree 
(TRRT) algorithm [24]-[25] illustrate in Fig. 1(b) is a 
planning algorithm that combines the strengths of two 
methods to efficiently find low-cost paths in complex 
configuration spaces. The algorithm consists of two 
stages: exploration and optimization. 

In the exploration stage, the algorithm samples a 
random configuration qrand in the configuration space C 
and extends the tree T from the nearest node qnear towards 
qrand with a fixed step size. The algorithm ensures that the 
step size is small enough to approximate well the cost 
variation between qnear and qnew, where qnew is the new 
node that results from extending the tree towards qrand. 
Additionally, the algorithm checks for collision detection, 
rejecting nodes that collide with obstacles in the space.  
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Fig. 1. (a) RRT algorithm and (b) TRRT algorithm 
 
 
In the optimization stage, the algorithm filters out 

irrelevant configurations regarding the search of low-cost 
paths before inserting qnew into the tree. The algorithm 
uses the TransitionTest function, which is based on the 
Metropolis criterion commonly used in stochastic 
optimization methods. The function takes the current 
temperature T and the increase rate Trate as inputs and 

returns true if the transition from the current node qnear to 
the new node qnew is accepted, and false otherwise. The 
temperature T parameter, despite its seemingly unrelated 
name, is derived from the Metropolis criterion and acts as 
a control parameter influencing the acceptance or rejection 
of transitions. It represents a trade-off between exploration 
and exploitation within the optimization process. By 
adjusting the temperature, the algorithm can introduce 
randomness that aids in escaping local optima and 
potentially discovering more optimal solutions. The 
function computes the cost difference between the current 
node ci and the new node cj, and if the difference is 
positive, the transition is accepted. Otherwise, the function 
uses a probability function that depends on the 
temperature T to accept or reject the transition. 

The main loop of the algorithm starts by initializing the 
tree T with the initial configuration qinit. The loop iterates 
until a stopping criterion is met, such as reaching the goal 
configuration. At each iteration, the algorithm samples a 
random configuration qrand and finds the nearest neighbour 
qnear in the tree T. The algorithm extends the tree towards 
qrand, resulting in a new node qnew. The algorithm then 
checks if the transition from qnear to qnew is accepted by 
using the TransitionTest function. If the transition is 
accepted, the algorithm adds the new node and edge to the 
tree T. 

Overall, the TRRT algorithm efficiently explores the 
configuration space and finds low-cost paths by 
combining the exploration bias of RRT-like algorithms 
with the efficiency of stochastic optimization methods. 

III. Methodology 
The developed Object Arrangement Robot mainly 

consists of the block diagram architecture as shown in Fig. 
2. To facilitate the implementation and performance 
analysis of the Transition-based Rapidly-exploring 
Random Tree (TRRT) and Inverse Kinematics (IK), a 
dedicated object arrangement path planning robot is 
developed. The robot development is carried out using the 
CoppeliaSim software, utilizing the Lua programming 
language. The designed Object Arrangement Path 
Planning Robot for retail warehouse environments is 
depicted in Fig. 3, while Table I provides an overview of 
the components employed [29]-[33]. Then, the overall 
process of the object arrangement robot is shown in Fig. 4 
in detail. 

    The UR5 robot inverse kinematics of joint angle 
calculation formula is used in this study to determine the 
joint angles required for a robotic arm manipulator to 
achieve a desired end-effector position. This formula, 
derived from [27] and [28], serves as a mathematical 
representation to solve for the joint angles. In this study, 
these formulae are implemented in MATLAB to calculate 
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the joint angles manually and compare them with the 
results obtained using the proposed algorithms in 
CoppeliaSim. This comparison enables an assessment of 
the accuracy and effectiveness of the algorithms in 
generating appropriate joint angles for the robotic arm 
manipulator. By validating the algorithms against the 
manual calculations, we can evaluate their performance 
and ascertain their suitability for real-world applications. 
The formula and the subsequent comparison contribute to 
assessing the algorithms' accuracy and provide insights 
into their practical implementation in robotic arm control 
and motion planning. The joint angle formula for UR5 
robot is shown below. 
 

𝜃𝜃1 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2( 𝑃𝑃5𝑦𝑦  0  , 𝑃𝑃5𝑥𝑥  0  ) ± acos

(

 𝑑𝑑4
√ 𝑃𝑃5𝑥𝑥  0

2 + 𝑃𝑃5𝑦𝑦  0
2
)

 + 
𝜋𝜋
2 

 

(1) 

𝜃𝜃2 = ∅1 − ∅2 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(− 𝑃𝑃4𝑧𝑧   
1 , − 𝑃𝑃4𝑥𝑥 ) − ASIN (

−𝑎𝑎3 SIN 𝜃𝜃3
| 𝑃𝑃4𝑥𝑥𝑧𝑧  
 
1 | ) 

1  

 
(2) 

𝜃𝜃3 =  ±ACOS(
| 𝑃𝑃4𝑥𝑥𝑧𝑧  
 
1 |2 − 𝑎𝑎22 − 𝑎𝑎32

2𝑎𝑎2𝑎𝑎3
) 

 
(3) 

𝜃𝜃4 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2( 𝑋𝑋4𝑦𝑦 
3 , 𝑋𝑋4𝑥𝑥) 

3  
 

(4) 

𝜃𝜃5 =  ± 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (
𝑃𝑃6𝑥𝑥  
0 𝑎𝑎𝑠𝑠𝑎𝑎 𝜃𝜃1 − 𝑃𝑃6𝑦𝑦  

0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃1 − 𝑑𝑑4
𝑑𝑑6

) 

 
(5) 

𝜃𝜃6 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2

(
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𝑎𝑎𝑠𝑠𝑎𝑎 𝜃𝜃5

,

− 𝑋𝑋0𝑥𝑥 
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)

 
 

 

 

(6) 

 
 

Fig. 2. System prototype architecture of Object Arrangement Robot 

 

Fig. 3. Object Arrangement Path Planning Robot 
 

TABLE I 
COMPONENTS OF OBJECT ARRANGEMENT ROBOT 

No. COMPONENT 
1 UR5 Cobot (Collaborative Robot) 
2 Robotiq_85 gripper 
3 Vision Sensor 
4 Proximity Sensor 
5 Pioneer PD3X 

IV. Experimental Results and Discussion 
To evaluate the performance of the basic traditional 

RRT algorithm and its T-RRT variant, the implementation 
of object arrangement path planning robot is designed in 
CoppeliaSim software. The evaluation consists of three 
experiments to assess various aspects, including path 
length, algorithm calculation time, repetition 
performance, manipulation accuracy, and the smoothness 
of the inverse kinematics implementation in the robotic 
arm. 

A. Evaluation of Path Length & Calculation Time 

In this section, the T-RRT algorithm is compared to the 
basic traditional RRT algorithm in terms of path length 
and calculation time. The recorded path lengths and 
calculation times are presented in Table Ⅱ and Table Ⅲ, 
respectively. Subsequently, the results are further 
compared in Table Ⅳ, showcasing the differences in path 
length and calculation time between the T-RRT algorithm 
and the basic traditional RRT algorithm. 
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Fig. 4. Flowchart of Object Arrangement Robot 

TABLE Ⅱ  
SIMULATION RESULT OF EXPERIMENT 1 OF RRT 

Path Path Length (m) Calculation Time (s) 

1 1.261 19.44 
2 1.263 12.63 
3 1.372 16.19 
4 1.388 14.19 
5 1.413 10.81 
6 1.409 11.94 
7 1.350 9.81 
8 1.349 7.50 
9 1.621 8.44 
10 1.620 11.19 
11 1.378 10.44 
12 1.379 5.94 
13 1.481 9.56 
14 1.630 19.50 
15 1.485 18.88 
16 1.480 12.19 
17 1.781 22.63 
18 1.769 27.00 
19 2.746 14.31 
20 2.741 17.94 
21 1.356 6.06 
22 1.353 11.63 
23 4.211 20.75 
24 4.212 20.63 
25 1.589 9.56 
26 1.579 11.50 
27 2.551 14.06 
28 2.550 21.63 
∑ 51.317 396.35 

 
 

TABLE Ⅲ 
SIMULATION RESULT OF EXPERIMENT 1 OF TRRT 

Path Path Length (m) Calculation Time (s) 
1 1.260 19.38 
2 1.259 11.19 
3 1.375 17.56 
4 1.393 16.25 
5 1.401 21.38 
6 1.400 20.31 
7 1.346 20.31 
8 1.346 17.81 
9 1.616 22.94 
10 1.617 22.19 
11 1.387 10.06 
12 1.389 17.50 
13 1.467 18.50 
14 1.483 29.94 
15 1.562 22.19 
16 1.479 19.63 
17 1.782 16.94 
18 1.796 19.41 
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19 2.772 24.13 
20 2.745 24.50 
21 1.357 16.50 
22 1.364 17.00 
23 2.641 19.75 
24 2.639 25.69 
25 1.593 22.63 
26 1.579 23.19 
27 2.554 25.75 
28 2.553 26.81 
∑ 48.155 569.44 

 
TABLE Ⅳ 

SUMMATION RESULT FOR RRT AND TRRT OF EXPERIMENT 1 
 Path Length (m) Time(s) 

RRT 51.317 396.35 

TRRT 48.155 569.44 

Difference 3.162 173.09 

 
The results show that when planning paths for object 

manipulation in a retail warehouse using the RRT and 
TRRT algorithms, the TRRT algorithm produces a 
slightly shorter path (difference of 3.162 m) than the RRT 
algorithm. This finding indicates the TRRT algorithm's 
ability to find a more direct path from the start to the goal 
configuration. However, the TRRT algorithm takes longer 
computation time (173.09 s) due to its time-consuming 
reduction step involved in pruning branches. 

 In contrast, the RRT algorithm is faster in computation 
time because it does not require a reduction step to find a 
collision-free path. Instead, the RRT algorithm explores 
the configuration space more randomly, which can result 
in longer paths. While the step reduction in the TRRT 
algorithm can lead to a shorter paths, it increases the 
computation time. 
  Overall, this experiment shows that the TRRT 
algorithm is more accurate and efficient in generating 
shorter paths for object manipulation in this particular 
environment, albeit with slightly longer computation time 
than the RRT algorithm. The results provide valuable 
insights for path planning in retail warehouse 
environments, where path length and time efficiency are 
crucial for optimizing operations. 

B. Evaluation of Repetition Comparative Performance 

Repetition tests are inevitable when it comes to robotics 
performance analysis. In the second experiment, the focus 
will be on evaluating the repetition performance of the 
RRT and TRRT algorithms. As an example, the 
performance of Path 1 planned by both algorithms, 
simulating its repetition five times, recording and 

analyzing the path length and calculation time. The 
comparative repetition performance between the RRT and 
TRRT algorithms in terms of path length and calculation 
time is presented in Table Ⅴ and Table Ⅵ. 

 
TABLE Ⅴ 

SIMULATION RESULT OF EXPERIMENT 2 IN TERMS OF PATH LENGTH 
REPETITION 

 1 2 3 4 5 Average  

RRT 1.261 1.260 5.03 1.261 4.796 2.722 

TRRT 1.260 1.260 1.260 1.260 1.260 1.260 

 
TABLE Ⅵ 

SIMULATION RESULT OF EXPERIMENT 2 IN TERMS OF CALCULATION 
TIME REPETITION 

 1 2 3 4 5 Average  

RRT 13.063 7.563 20.125 13.938 24.5 15.838 

TRRT 17.875 21.625 14.625 12.313 15.813 16.450 

 
The results demonstrate that, on average, the TRRT 

algorithm consistently generates shorter paths (average 
length of 1.260 meters) compared to the RRT algorithm 
(average length of 2.722 meters). This finding highlights 
the superiority of the TRRT algorithm in generating 
shorter paths. The RRT algorithm's poor performance is 
attributed to its reliance on randomness and heuristics, 
resulting in paths of varying lengths. Conversely, the 
deterministic nature of the TRRT algorithm, combined 
with its efficient exploration of the configuration space 
through the "removal of unnecessary branches" technique, 
consistently generates feasible paths of the same length. 
However, the TRRT algorithm took slightly longer to 
compute the paths, with an average calculation time of 
16.450 seconds compared to 15.838 seconds for the RRT 
algorithm. 

Overall, this study suggests that the TRRT algorithm is 
more accurate and efficient in generating shorter paths 
than the RRT algorithm for path planning of objects in this 
particular environment. Although the TRRT algorithm 
may require slightly more computation time, its ability to 
consistently generate shorter paths is a valuable asset for 
optimizing path planning in this context. 

C. Evaluation of Smoothness & Accuracy of IK 
Implementation Evaluation 

In this section, the evaluation performance of the 
inverse kinematics-based path trajectory in terms of 
accuracy and smoothness of the robotic arm manipulation 
will be focused. The analysis involves studying the 
position of the UR5 Cobot's joint angles, which change 
according to the position of the end effector through 
inverse kinematics in CoppeliaSim graphs. The 
manipulation of joint angles is visualized in Fig. 5, 
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showcasing the changes in each joint's angle over time as 
the end effector moves to different positions. 
Simultaneously, Fig. 6 depicts the corresponding 
movement of the end effector over time. Both figures 
provided a representative view of the manipulation 
process, demonstrating the smooth and realistic motion 
achieved by manipulating the joint angles using inverse 
kinematics. To assess the accuracy of the system, the joint 
angle manipulation for the initial point of the end effector 
from the CoppeliaSim simulation is compared with the 
Inverse Kinematics Calculation in MATLAB. The results 
are presented in Table Ⅶ. The comparison aims to 
validate the accuracy of the UR5 Cobot manipulation 
based on the inverse kinematics method. 

TABLE Ⅶ 
COMPARISON OF JOINTS ANGLE OF UR5 ROBOT AT INITIAL POSITION IN 

UNIT RADIAN 
Angle at 
1st point 

(rad) 

Joint 
J1 J2 J3 J4 J5 J6 

Coppelia-
Sim  0 0.1544 0.9365 0.5055 -1.5732 -0.2143 

MATLAB 0 0.1500 0.9401 0.5100 -1.5708 -0.2142 
Error 0 0.0044 0.0036 0.0045 0.0024 0.0001 
Accuracy 1 0.9707 0.9962 0.9912 0.9985 0.9995 

Average 0.9927 or 99.27% 

Where 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  |𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀−𝑆𝑆𝐶𝐶𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀 𝐶𝐶𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀|
|𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀|  

 
 
 

  
 
 
 
 
 

 
 
 

 
 
 

Fig. 5. Angle Joint 1 to 6 of the UR5 Cobot in the first 30 seconds 
 

         
 
 
 

Fig. 6. Coordinates of the end effector position of UR5 Cobot in the 
first 30 second 

Fig. 5 illustrates the manipulation of the UR5 Cobot's 
joints angles to reach the end-effector positions depicted 
in Fig. 6, with an update occurring every second. The 
graph in Fig. 5 shows the changes in the angles of each 
joint over time, as the end-effector moves to reach 
different positions. On the other hand, Fig. 6 illustrates the 
corresponding movement of the end-effector over time, as 
it reaches different positions. Both figures only display the 
first 30 seconds of the manipulation process, as the entire 
process, which lasted approximately 2 minutes, would be 
too extensive to show in the report. The first 30 seconds, 
which correspond to the pick and place task of the first 
object, have been selected to provide a representative view 
of the manipulation change. It is important to note that the 
joint angle manipulation in Fig. 5 is done using inverse 
kinematics, which is a more complex and accurate 
method. On the other hand, inverse kinematics considers 
the dynamics of the robot's joints, such as joint limits and 
singularities, to calculate the optimal joint angles that 
results in smooth, realistic motion of the end-effector. The 
smooth and realistic motion can be observed from the 
graph as it illustrates the smooth motion without any jerky 
and unrealistic motion. Overall, the graphs demonstrate 
that the UR5 reaches the destination coordinates by 
manipulating the joints angles in a smooth and accurate 
manner.  

Furthermore, Table Ⅶ compares the joint angles of the 
UR5 Cobot's first starting point in CoppeliaSim with the 
inverse kinematics calculation in MATLAB. The results, 
presented in Table Ⅶ, show a small error, indicating high 
accuracy in the manipulation of the UR5 Cobot based on 
the inverse kinematics method. This comparison further 
confirmed the effectiveness of the inverse kinematics 
approach in producing smooth and realistic motion for the 
UR5 Cobot. Thus, the combination of graphical 
visualization and accuracy assessment provide 
comprehensive insights into the performance of the 
inverse kinematics-based path trajectory, highlighting its 
accuracy and ability to produce smooth and realistic 
motion for the UR5 Cobot. 

V. Conclusion 
In this study, the TRRT approach is implemented to 

obtain the shortest path for robotic arm manipulation in 
warehouse environment. Furthermore, the IK approach is 
studied and analyzed for smoothness of the arm's 
movements during manipulation. The results show that the 
TRRT method generates shorter paths with good 
repetition performance compared to the traditional RRT 
approach. Moreover, the IK implementation improves the 
smoothness and accuracy of the arm's movements and 
reaches the accuracy of 99.27%. In overall, combining 
TRRT and IK can result in an efficient and accurate object 
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arrangement path planning robot, leading to increased 
productivity and performance in retail warehouse 
environments. 

  For future research, the TRRT algorithm can be 
further optimized to reduce computation time and improve 
path planning performance. There is potential for the 
TRRT algorithm to be enhanced to handle dynamic 
obstacles in the environment. At present, the TRRT 
algorithm assumes a static environment, which is not 
always the case in real-world applications. It is therefore 
essential to develop a dynamic TRRT algorithm that can 
adapt to these situations. Moreover, the TRRT algorithm 
can be expanded to support multiple robots collaborating 
on a task. This could be achieved by modifying the 
transition test function to consider the movements of other 
robots in the environment. Additionally, the performance 
of the TRRT algorithm can be tested in more complex 
environments with tighter spaces and more obstacles. 
Finally, the TRRT algorithm can be integrated with other 
planning algorithms, such as a task planner, to generate 
high-level plans for the robot before using the TRRT 
algorithm for motion planning. It is anticipated that with 
these enhancements, the TRRT algorithm will experience 
significant time improvements while also offering more 
robust and efficient path planning capabilities. 
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