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Abstract –With the rising trend of restructuring in the electric power industry like the inclusion of 
renewable energy (RE) and stretching of long lines, several transmission lines are forced to operate 
at almost full capacity. As a result, more incidents of voltage instability are being recorded, 
culminating in major system failures. Bhutanese people are used to experiencing numerous voltage 
dips and swells since decades but no hue and cry was heard. However, with more sensitive 
equipments and devices imported into the country, the need of stable and reliable power are 
realized. The voltage stability studies seek to maintain consistently acceptable voltages in all power 
system buses under normal and post-disturbance situations. It is critical to focus on voltage 
integrity, which might otherwise result in massive losses. One of the primary causes of voltage 
failure, among others, is an insufficient supply of reactive power in the system. The reactive power 
handling capabilities of a system can be enhanced by using a flexible AC transmission systems 
(FACTS) device. Nonetheless,  given the cost implications, Bhutan may not opt for FACTS devices. 
This paper, therefore, presents and examines different optimization algorithms used to improve the 
voltage profile of the network through various methods. The paper makes a comparative analysis of 
modern and widely used optimization techniques to achieve enhancement in voltage stability. The 
hybrid optimization techniques are preffered over one but focusing on having effective control 
system in the generation, optimal tap setting for every transformer, and encouraging DG integration 
at weak buses are recommended.    
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I. Introduction 

Bhutanese people are blessed with tremendous 
potential to harness renewable energy. Bhutan has so far 
harnessed only 2,326 MW of the estimated potential of 
36,900 MW of hydropower [1] and just 9 MW of 
combined wind and solar of the estimated potential of 12 
gigawatts (GW) of solar and 760 megawatts (MW) of 
wind energy, respectively [2]. Bhutan’s power sector 
provides a significant contribution to its national economy 
by selling almost 70 % of its power generated to India. The 
country generates surplus power during the monsoon 
season from its run-of-river hydropower infrastructure but 
in lean seasons (November–March) owing to reduced flow 
in the rivers, the country relies on energy imports. With 
the inclusion of wind and solar energy generation in recent 
years, the issue of insufficient domestic demand in lean 
seasons is expected to be met. 

With the rising trend of restructuring in the electric 
power industry like the inclusion of renewable energy 
(RE) and stretching of long lines, several transmission 
lines throughout the world have been forced to operate at 
almost full capacity. As a result, more incidents of voltage 
instability and collapse are being recorded, culminating in 
major system failures. Bhutan also have been facing 
similar issues since the country started generating 
electricity. But interestingly, people did not seem to bother 
much. With more sensitive equipments and devices come 
into the country, now people are realizing the need of 
stable and reliable power.  

To avoid these adverse situations, a rapid and exact 
estimation of voltage stability margin is required. In a 
power system, reliability is the key factor, but varying 
terminal voltages and frequency oscillations tend to impair 
the system's reliability [3]. Voltage instability occurs 
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primarily because reactive power, unlike active power, 
cannot be transferred over long distances. As a result, a 
power system with a lot of reactive power resources is less 
likely to have voltage stability issues.  

The line losses cannot be removed, but they can be 
reduced to a certain extent by employing modern 
optimization algorithms [4]. Power System Optimization 
(PSO) presents traditional and meta-heuristic optimization 
approaches and algorithms for power system research. 
The classic aspects of optimization in power systems 
covered optimal power flow, economic dispatch, unit 
commitment, and power quality optimization. Moreover, 
issues relating to distributed generation sizing, allocation 
problems, scheduling of renewable resources, energy 
storage, power reserve-based problems, efficient use of 
smart grid capabilities, and protection studies in modern 
power systems are also included. The optimization 
methods are widely used in reactive power planning (RPP) 
and enhancement of voltage stability.  

Voltage deviation and stability constrained RPP, is a 
critical and hard topic in power systems due to its complex 
goal functions, restrictions, and solution techniques [5], 
[6]. However, voltage stability is a key concern for 
engineers in power system construction, operation, and 
planning [7]. To supply customers with efficient, 
consistent, clean, and stable electrical power, the power 
system must operate closer to its stability limitations [8], 
[9]. For example; Automatic Voltage Regulator (AVR) 
and Load Frequency Controller (LFC) are used to 
maintain terminal voltages and reduce frequency 
oscillations, respectively [3]. The power system stabilizer 
(PSS) can compensate for the negative damping of AVR. 
PSS includes counter-stabilizing signals to reduce 
oscillations caused by AVR and LFC. The generator must 
be outfitted with gear that allows it to cope with 
fluctuating load circumstances and simultaneous 
flickering. PSS's efficacy is determined by the controller 
it includes. In this circumstance, the stability of the power 
system becomes the center of attention and remains one of 
the most difficult challenges confronting the power 
community and particularly in the Bhutanese power 
system [10]. 

Typically, a reactive power dispatch is performed to get 
the optimal values of control variables in order to decrease 
transmission loss and enhance the system's voltage profile 
while satisfying the device and system constraints. This 
type of circumstance gives rise to a non-linear 
optimization mixed-integer problem [11]. Several 
techniques have been used to tackle the problem, however, 
there have been difficulties in dealing with the restrictions 
[12].  

Multi-objective optimization is expected to be used in 
most real-life problems. Therefore, all the optimization 
techniques work to optimize (whether to maximize or 
minimize) the objective functions based on the different 
constraints.   

The problem is constructed based on the following 
assumptions: 

• The system under consideration is balanced. 
• Active and reactive power is calculated at the 

fundamental frequency, and extra power at 
harmonic frequency is considered insignificant. 

• The size of the reactive source is regarded as a 
continuous variable, even though it is discrete. 

• The reactive capability of a generator is 
portrayed by the conventional P-Q diagram, but 
for the planning study, it is usually sufficient to 
assume a fixed upper limit relevant to the 
generator MW output. 

This paper provides an extensive review of the 
optimization methods used in the world recently and some 
feasible suggestions are made in connection to the 
Bhutanese situation. The paper is sequenced with the 
formulation of problem. The different optimization 
methods are then discussed with comparative analysis of 
each and then the results are discussed. The probable 
recommendations are made and finally conclusion is 
proposed.   

II. Materials and Method 

A. Voltage stability evaluations 

The voltage profile for a typical IEEE-30 bus for line 
outage is presented in Fig. 1.  

 
Fig.  1. The voltage profile with line-outage 28-27 [13] 

It is evident from Fig. 1 that the voltage is never the 
same for all the buses. Rather the bus voltage keeps 
decreasing (the voltage profile before optimization) as the 
distance from the generation increases. The voltages at 
buses 26, 27, 29, and 30 are very low even defying the 
voltage regulation of the system. However, the voltage 
level could be somehow brought to the stability range by 
using optimization techniques.  

The major causes of voltage instability are: unsuitable 
positions of FACTS controllers, high load reactive power 
usage, frequency of contingencies, ON-Load Tap-
Changer (OLTC) reverse action, voltage sources too far 
from load centers, poor communication between multiple 
FACTS controllers, continuous power load presence, 
transmission gap [14]. Therefore, there is a need to find 
out the mitigation measures to this. Voltage instability 
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may be avoided using a variety of approaches:  
• the installation of Series or Shunt Capacitors 
• Installation of Synchronous condensers 
• Shedding of Low-Voltage Load 
• Tap-Changer in Reverse Operation 
• Rescheduling of generations 
• distributed generations (DGs) 
• Multi-FACTS Controller Coordination 
• the placement of FACTS devices 

There can be series of methods to improve the voltage 
stability but to achive the place and value of of devices and 
methods mentioned above requires good optimization 
methods/algorithms. For example, optimization methods 
can be used to get the optimal location of shunt capacitors 
or FACTS devices.  

A.1     Model Analysis for voltage stability Evaluation 

Modal analysis is one of the most effective approaches 
for improving voltage stability in power systems. The 
power flow equations for a steady-state system are 
provided by: 

 �Δ𝑃𝑃𝑃𝑃Δ𝑄𝑄𝑄𝑄� = �
𝐽𝐽𝐽𝐽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐽𝐽𝐽𝐽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐽𝐽𝐽𝐽𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 𝐽𝐽𝐽𝐽𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃

� �ΔδΔ𝑉𝑉𝑉𝑉� (1) 

 
where, 
Δ𝑃𝑃𝑃𝑃- incremental change in bus real power 
Δ𝑄𝑄𝑄𝑄- incremental change in bus reactive power injection 
Δ𝛿𝛿𝛿𝛿- incremental change in voltage angle 
Δ𝑉𝑉𝑉𝑉- incremental change in bus voltage magnitude 
𝐽𝐽𝐽𝐽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝐽𝐽𝐽𝐽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝐽𝐽𝐽𝐽𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃, 𝐽𝐽𝐽𝐽𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 are Jacobian matrices and the sub-

matrices of the system voltage stability affected by 𝑃𝑃𝑃𝑃 and 
𝑄𝑄𝑄𝑄. 

If Δ𝑃𝑃𝑃𝑃 = 0, then 
 

 Δ𝑄𝑄𝑄𝑄 = �𝐽𝐽𝐽𝐽𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 − 𝐽𝐽𝐽𝐽𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝐽𝐽𝐽𝐽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−1𝐽𝐽𝐽𝐽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�Δ𝑉𝑉𝑉𝑉 = 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅Δ𝑉𝑉𝑉𝑉 (2) 
 

 Δ𝑉𝑉𝑉𝑉 = 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅−1 − Δ𝑄𝑄𝑄𝑄 (3) 
 

Where, 
 

 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅 = �𝐽𝐽𝐽𝐽𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 − 𝐽𝐽𝐽𝐽𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝐽𝐽𝐽𝐽𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄−1𝐽𝐽𝐽𝐽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� 
 

(4) 

 
𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅 is called the reduced Jacobian matrix of the system. 

A.2     Modes of voltage instability 

The system's voltage stability characteristics were 
determined by calculating the Eigenvalues and 
Eigenvectors. 

 
Let, 

 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅 = 𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉 (5) 
 

Where, 𝜉𝜉𝜉𝜉- right eigenvector matrix of 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅 
𝜉𝜉𝜉𝜉- left eigenvector matrix of 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅 
𝜉𝜉𝜉𝜉- diagonal eigenvalue matrix of 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅, and 
 

 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅−1 = 𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉−1𝜉𝜉𝜉𝜉 
 (6) 

From Eq. (3) and (6), 

 Δ𝑉𝑉𝑉𝑉 = 𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉−1𝜉𝜉𝜉𝜉Δ𝑄𝑄𝑄𝑄 
 (7) 

Or, 
 

 Δ𝑉𝑉𝑉𝑉 = �
𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖
λi

Δ𝑄𝑄𝑄𝑄 

 
(8) 

where, ‘suffix’ ‘𝑖𝑖𝑖𝑖’ represents the 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ column/row for 
eigenvector. 
𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖- the 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ eigenvalue of 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅  
The corresponding 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ modal voltage variation is given 

by: 

 ΔQmi = 𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖 
 (9) 

where,  

 
Ki = �𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 − 1

𝑖𝑖𝑖𝑖

 

 
(10) 

 𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the 𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡ℎ element of 𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖 
The corresponding 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ modal voltage variation is given 

by: 

 
 ΔVmi = �

1
𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖
�Δ𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖  

 
(11) 

If |𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖| = 0, then the 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ modal voltage will collapse. 

In Eq. (11), let Δ𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 has all its elements zero except for 
𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ as 1. Then Eq. (8) can be restated as, 

 

 
Δ𝑉𝑉𝑉𝑉 = �

𝜉𝜉𝜉𝜉1𝑘𝑘𝑘𝑘𝜉𝜉𝜉𝜉1
𝜆𝜆𝜆𝜆1𝑘𝑘𝑘𝑘

 

 
(12) 

Where, 𝜉𝜉𝜉𝜉1𝑘𝑘𝑘𝑘 represents 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ element of 𝜉𝜉𝜉𝜉1 
 

Then, the 𝑉𝑉𝑉𝑉 − 𝑄𝑄𝑄𝑄 sensitivity at bus 𝑘𝑘𝑘𝑘 would be: 
 

 
𝜕𝜕𝜕𝜕𝑉𝑉𝑉𝑉𝑘𝑘𝑘𝑘
𝜕𝜕𝜕𝜕𝑄𝑄𝑄𝑄𝑘𝑘𝑘𝑘

= �
𝜉𝜉𝜉𝜉1𝜉𝜉𝜉𝜉1𝑘𝑘𝑘𝑘
λ1

Δ𝑄𝑄𝑄𝑄 = �
𝑃𝑃𝑃𝑃𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖
𝜆𝜆𝜆𝜆1𝑖𝑖𝑖𝑖

 

 
(13) 
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may be avoided using a variety of approaches:  
• the installation of Series or Shunt Capacitors 
• Installation of Synchronous condensers 
• Shedding of Low-Voltage Load 
• Tap-Changer in Reverse Operation 
• Rescheduling of generations 
• distributed generations (DGs) 
• Multi-FACTS Controller Coordination 
• the placement of FACTS devices 

There can be series of methods to improve the voltage 
stability but to achive the place and value of of devices and 
methods mentioned above requires good optimization 
methods/algorithms. For example, optimization methods 
can be used to get the optimal location of shunt capacitors 
or FACTS devices.  

A.1     Model Analysis for voltage stability Evaluation 

Modal analysis is one of the most effective approaches 
for improving voltage stability in power systems. The 
power flow equations for a steady-state system are 
provided by: 
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may be avoided using a variety of approaches:  
• the installation of Series or Shunt Capacitors 
• Installation of Synchronous condensers 
• Shedding of Low-Voltage Load 
• Tap-Changer in Reverse Operation 
• Rescheduling of generations 
• distributed generations (DGs) 
• Multi-FACTS Controller Coordination 
• the placement of FACTS devices 

There can be series of methods to improve the voltage 
stability but to achive the place and value of of devices and 
methods mentioned above requires good optimization 
methods/algorithms. For example, optimization methods 
can be used to get the optimal location of shunt capacitors 
or FACTS devices.  

A.1     Model Analysis for voltage stability Evaluation 

Modal analysis is one of the most effective approaches 
for improving voltage stability in power systems. The 
power flow equations for a steady-state system are 
provided by: 
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matrices of the system voltage stability affected by 𝑃𝑃𝑃𝑃 and 
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If Δ𝑃𝑃𝑃𝑃 = 0, then 
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From Eq. (3) and (6), 
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may be avoided using a variety of approaches:  
• the installation of Series or Shunt Capacitors 
• Installation of Synchronous condensers 
• Shedding of Low-Voltage Load 
• Tap-Changer in Reverse Operation 
• Rescheduling of generations 
• distributed generations (DGs) 
• Multi-FACTS Controller Coordination 
• the placement of FACTS devices 

There can be series of methods to improve the voltage 
stability but to achive the place and value of of devices and 
methods mentioned above requires good optimization 
methods/algorithms. For example, optimization methods 
can be used to get the optimal location of shunt capacitors 
or FACTS devices.  

A.1     Model Analysis for voltage stability Evaluation 

Modal analysis is one of the most effective approaches 
for improving voltage stability in power systems. The 
power flow equations for a steady-state system are 
provided by: 
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matrices of the system voltage stability affected by 𝑃𝑃𝑃𝑃 and 
𝑄𝑄𝑄𝑄. 

If Δ𝑃𝑃𝑃𝑃 = 0, then 
 

 Δ𝑄𝑄𝑄𝑄 = �𝐽𝐽𝐽𝐽𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 − 𝐽𝐽𝐽𝐽𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝐽𝐽𝐽𝐽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−1𝐽𝐽𝐽𝐽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�Δ𝑉𝑉𝑉𝑉 = 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅Δ𝑉𝑉𝑉𝑉 (2) 
 

 Δ𝑉𝑉𝑉𝑉 = 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅−1 − Δ𝑄𝑄𝑄𝑄 (3) 
 

Where, 
 

 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅 = �𝐽𝐽𝐽𝐽𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 − 𝐽𝐽𝐽𝐽𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝐽𝐽𝐽𝐽𝑃𝑃𝑃𝑃𝑄𝑄𝑄𝑄−1𝐽𝐽𝐽𝐽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� 
 

(4) 

 
𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅 is called the reduced Jacobian matrix of the system. 

A.2     Modes of voltage instability 

The system's voltage stability characteristics were 
determined by calculating the Eigenvalues and 
Eigenvectors. 

 
Let, 

 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅 = 𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉 (5) 
 

Where, 𝜉𝜉𝜉𝜉- right eigenvector matrix of 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅 
𝜉𝜉𝜉𝜉- left eigenvector matrix of 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅 
𝜉𝜉𝜉𝜉- diagonal eigenvalue matrix of 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅, and 
 

 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅−1 = 𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉−1𝜉𝜉𝜉𝜉 
 (6) 

From Eq. (3) and (6), 

 Δ𝑉𝑉𝑉𝑉 = 𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉−1𝜉𝜉𝜉𝜉Δ𝑄𝑄𝑄𝑄 
 (7) 

Or, 
 

 Δ𝑉𝑉𝑉𝑉 = �
𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖
λi

Δ𝑄𝑄𝑄𝑄 

 
(8) 

where, ‘suffix’ ‘𝑖𝑖𝑖𝑖’ represents the 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ column/row for 
eigenvector. 
𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖- the 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ eigenvalue of 𝐽𝐽𝐽𝐽𝑅𝑅𝑅𝑅  
The corresponding 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ modal voltage variation is given 

by: 

 ΔQmi = 𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖 
 (9) 

where,  

 
Ki = �𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 − 1

𝑖𝑖𝑖𝑖

 

 
(10) 

 𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the 𝑗𝑗𝑗𝑗𝑡𝑡𝑡𝑡ℎ element of 𝜉𝜉𝜉𝜉𝑖𝑖𝑖𝑖 
The corresponding 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ modal voltage variation is given 

by: 

 
 ΔVmi = �

1
𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖
�Δ𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖  

 
(11) 

If |𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖| = 0, then the 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡ℎ modal voltage will collapse. 

In Eq. (11), let Δ𝑄𝑄𝑄𝑄𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖 has all its elements zero except for 
𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ as 1. Then Eq. (8) can be restated as, 

 

 
Δ𝑉𝑉𝑉𝑉 = �

𝜉𝜉𝜉𝜉1𝑘𝑘𝑘𝑘𝜉𝜉𝜉𝜉1
𝜆𝜆𝜆𝜆1𝑘𝑘𝑘𝑘

 

 
(12) 

Where, 𝜉𝜉𝜉𝜉1𝑘𝑘𝑘𝑘 represents 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ element of 𝜉𝜉𝜉𝜉1 
 

Then, the 𝑉𝑉𝑉𝑉 − 𝑄𝑄𝑄𝑄 sensitivity at bus 𝑘𝑘𝑘𝑘 would be: 
 

 
𝜕𝜕𝜕𝜕𝑉𝑉𝑉𝑉𝑘𝑘𝑘𝑘
𝜕𝜕𝜕𝜕𝑄𝑄𝑄𝑄𝑘𝑘𝑘𝑘

= �
𝜉𝜉𝜉𝜉1𝜉𝜉𝜉𝜉1𝑘𝑘𝑘𝑘
λ1

Δ𝑄𝑄𝑄𝑄 = �
𝑃𝑃𝑃𝑃𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖
𝜆𝜆𝜆𝜆1𝑖𝑖𝑖𝑖

 

 
(13) 
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B. Optimization Problem Formulation 

B.1     Minimizing Real Power Loss 

The major worry with increasing load is an increase in 
transmission loss as well as a difficulty with voltage 
stability. As a result, when the system loading is gradually 
raised, reactive power assistance is required to maintain 
the voltage stability. As a result, the primary goal of any 
RPP study is to reduce the real power loss, as represented 
by Eq. (14), and to minimize voltage variation at weak 
buses under various loading circumstances. The cost of the 
system rises as a result of the system's significant losses. 
To lower this cost, the device's power loss is minimized 
[38]. As a result, the economic goal is largely to reduce 
active power loss in the transmission system [16]–[18]. It 
may be expressed numerically as: 

 

 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿 = � 𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘�𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖2 + 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖2 + 2𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�
𝑛𝑛𝑛𝑛

k=(i,j)

 (14) 

 
Where, 𝑛𝑛𝑛𝑛 is the number of transmission lines, 𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘 is the 
conductance of the branch 𝑘𝑘𝑘𝑘, 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 and 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖  are voltage 
magnitudes at bus 𝑖𝑖𝑖𝑖 and bus 𝑗𝑗𝑗𝑗, 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the voltage angle 
difference between two buses. 

According to Eq. (14), active power loss is a function 
of bus voltages, phase angles, and line conductance. The 
Var sources in the power network, such as generators, 
OLTCs, static capacitors, and FACTS devices can help to 
enhance voltage profile. FACTS devices particularly 
affect line reactance and thus have a great impact on power 
flow control.  

B.2     Minimizing voltage deviation 

 Fitness function for voltage deviation (VD) provides 
information about the minimization of voltage deviation 
magnitudes at load buses. However, keeping a steady 
voltage profile in the power system for secure operation is 
a challenging objective. Mathematically, the reduction of 
(VD) can be characterized as [18], [19]: 
 

 𝑉𝑉𝑉𝑉𝐷𝐷𝐷𝐷 = � |𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 − 1.0|
𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑖𝑖𝑖𝑖=𝑖

 

 

(15) 

where, 𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the number of buses. 

B.3     System Constraints 

a. Load flow equality constraint: - 

Nodal active and reactive power balance [16] 
 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑃𝑃(𝑉𝑉𝑉𝑉, 𝛿𝛿𝛿𝛿) = 0 (16) 

 

 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑄𝑄𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑄𝑄(𝑉𝑉𝑉𝑉, 𝛿𝛿𝛿𝛿) = 0 (17) 
  
Where, 𝑖𝑖𝑖𝑖 = 1,2 … 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛 is the number of buses. 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺 and 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺 
are real and reactive power of the generator, 𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷  and 𝑄𝑄𝑄𝑄𝐷𝐷𝐷𝐷 are 
the real and reactive power load of the generator.  
 
b.     Inequality constraints: - 
 

1. Bus voltage limits: 

 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ≤ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 ≤ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (18) 
 

2. Transformer tap-setting limit: 

 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ≤ 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘 ≤ 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (19) 
 

3. Reactive power generation limit: 

 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ≤ 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 ≤ 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 (20) 
 

4. Reactive power source installation limit: 

 𝑄𝑄𝑄𝑄𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ≤ 𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 ≤ 𝑄𝑄𝑄𝑄𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (21) 
 

5. Transmission line apparent power flow limit: 

 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙 ≤ 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (22) 
 
 These limitations represent the system's operational 
restrictions. The control variables include generator 
terminal bus voltages, transformer tap setting, and reactive 
power generated by the capacitor bank. Slack bus voltage, 
load bus voltages, reactive power production, and line 
flow limit where active power is created are state 
variables. The state variables are satisfied by applying a 
penalty to the objective function. Depending on the kind 
of issue, different optimization techniques employ all or 
some of the equations given above. 

III. Optimization Algorithms used in 
Power System 

 There is now a big push in the field of soft computing 
research to find novel optimization strategies based on 
nature. Fig. 2 depicts several approaches to optimization 
strategies. However, many other techniques are being 
proposed by combining one or more of the techniques 
presented. 

A number of traditional mathematical programming-
based approaches have been offered to tackle the reactive 
power dispatch problem. The Newton technique [17], 
Monte Carlo Simulations [20], Linear Programming (LP) 
[21], [22] are examples of these methods. Certain 
disadvantages are, however, mentioned. Such approaches 
using derivatives and gradients, for example, may be 
incapable of determining the global optimum. It is also not 
viable to incorporate the discrete variables associated with 
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B. Optimization Problem Formulation 

B.1     Minimizing Real Power Loss 

The major worry with increasing load is an increase in 
transmission loss as well as a difficulty with voltage 
stability. As a result, when the system loading is gradually 
raised, reactive power assistance is required to maintain 
the voltage stability. As a result, the primary goal of any 
RPP study is to reduce the real power loss, as represented 
by Eq. (14), and to minimize voltage variation at weak 
buses under various loading circumstances. The cost of the 
system rises as a result of the system's significant losses. 
To lower this cost, the device's power loss is minimized 
[38]. As a result, the economic goal is largely to reduce 
active power loss in the transmission system [16]–[18]. It 
may be expressed numerically as: 

 

 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿 = � 𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘�𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖2 + 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖2 + 2𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�
𝑛𝑛𝑛𝑛

k=(i,j)

 (14) 

 
Where, 𝑛𝑛𝑛𝑛 is the number of transmission lines, 𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘 is the 
conductance of the branch 𝑘𝑘𝑘𝑘, 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 and 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖  are voltage 
magnitudes at bus 𝑖𝑖𝑖𝑖 and bus 𝑗𝑗𝑗𝑗, 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the voltage angle 
difference between two buses. 

According to Eq. (14), active power loss is a function 
of bus voltages, phase angles, and line conductance. The 
Var sources in the power network, such as generators, 
OLTCs, static capacitors, and FACTS devices can help to 
enhance voltage profile. FACTS devices particularly 
affect line reactance and thus have a great impact on power 
flow control.  

B.2     Minimizing voltage deviation 

 Fitness function for voltage deviation (VD) provides 
information about the minimization of voltage deviation 
magnitudes at load buses. However, keeping a steady 
voltage profile in the power system for secure operation is 
a challenging objective. Mathematically, the reduction of 
(VD) can be characterized as [18], [19]: 
 

 𝑉𝑉𝑉𝑉𝐷𝐷𝐷𝐷 = � |𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 − 1.0|
𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑖𝑖𝑖𝑖=𝑖

 

 

(15) 

where, 𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the number of buses. 

B.3     System Constraints 

a. Load flow equality constraint: - 

Nodal active and reactive power balance [16] 
 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑃𝑃(𝑉𝑉𝑉𝑉, 𝛿𝛿𝛿𝛿) = 0 (16) 

 

 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑄𝑄𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑄𝑄(𝑉𝑉𝑉𝑉, 𝛿𝛿𝛿𝛿) = 0 (17) 
  
Where, 𝑖𝑖𝑖𝑖 = 1,2 … 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛 is the number of buses. 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺 and 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺 
are real and reactive power of the generator, 𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷  and 𝑄𝑄𝑄𝑄𝐷𝐷𝐷𝐷 are 
the real and reactive power load of the generator.  
 
b.     Inequality constraints: - 
 

1. Bus voltage limits: 

 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ≤ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 ≤ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (18) 
 

2. Transformer tap-setting limit: 

 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ≤ 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘 ≤ 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (19) 
 

3. Reactive power generation limit: 

 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ≤ 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 ≤ 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 (20) 
 

4. Reactive power source installation limit: 

 𝑄𝑄𝑄𝑄𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ≤ 𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 ≤ 𝑄𝑄𝑄𝑄𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (21) 
 

5. Transmission line apparent power flow limit: 

 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙 ≤ 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (22) 
 
 These limitations represent the system's operational 
restrictions. The control variables include generator 
terminal bus voltages, transformer tap setting, and reactive 
power generated by the capacitor bank. Slack bus voltage, 
load bus voltages, reactive power production, and line 
flow limit where active power is created are state 
variables. The state variables are satisfied by applying a 
penalty to the objective function. Depending on the kind 
of issue, different optimization techniques employ all or 
some of the equations given above. 

III. Optimization Algorithms used in 
Power System 

 There is now a big push in the field of soft computing 
research to find novel optimization strategies based on 
nature. Fig. 2 depicts several approaches to optimization 
strategies. However, many other techniques are being 
proposed by combining one or more of the techniques 
presented. 

A number of traditional mathematical programming-
based approaches have been offered to tackle the reactive 
power dispatch problem. The Newton technique [17], 
Monte Carlo Simulations [20], Linear Programming (LP) 
[21], [22] are examples of these methods. Certain 
disadvantages are, however, mentioned. Such approaches 
using derivatives and gradients, for example, may be 
incapable of determining the global optimum. It is also not 
viable to incorporate the discrete variables associated with 
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B. Optimization Problem Formulation 

B.1     Minimizing Real Power Loss 

The major worry with increasing load is an increase in 
transmission loss as well as a difficulty with voltage 
stability. As a result, when the system loading is gradually 
raised, reactive power assistance is required to maintain 
the voltage stability. As a result, the primary goal of any 
RPP study is to reduce the real power loss, as represented 
by Eq. (14), and to minimize voltage variation at weak 
buses under various loading circumstances. The cost of the 
system rises as a result of the system's significant losses. 
To lower this cost, the device's power loss is minimized 
[38]. As a result, the economic goal is largely to reduce 
active power loss in the transmission system [16]–[18]. It 
may be expressed numerically as: 

 

 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿 = � 𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘�𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖2 + 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖2 + 2𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�
𝑛𝑛𝑛𝑛

k=(i,j)

 (14) 

 
Where, 𝑛𝑛𝑛𝑛 is the number of transmission lines, 𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘 is the 
conductance of the branch 𝑘𝑘𝑘𝑘, 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 and 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖  are voltage 
magnitudes at bus 𝑖𝑖𝑖𝑖 and bus 𝑗𝑗𝑗𝑗, 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the voltage angle 
difference between two buses. 

According to Eq. (14), active power loss is a function 
of bus voltages, phase angles, and line conductance. The 
Var sources in the power network, such as generators, 
OLTCs, static capacitors, and FACTS devices can help to 
enhance voltage profile. FACTS devices particularly 
affect line reactance and thus have a great impact on power 
flow control.  

B.2     Minimizing voltage deviation 

 Fitness function for voltage deviation (VD) provides 
information about the minimization of voltage deviation 
magnitudes at load buses. However, keeping a steady 
voltage profile in the power system for secure operation is 
a challenging objective. Mathematically, the reduction of 
(VD) can be characterized as [18], [19]: 
 

 𝑉𝑉𝑉𝑉𝐷𝐷𝐷𝐷 = � |𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 − 1.0|
𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑖𝑖𝑖𝑖=𝑖

 

 

(15) 

where, 𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the number of buses. 

B.3     System Constraints 

a. Load flow equality constraint: - 

Nodal active and reactive power balance [16] 
 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑃𝑃(𝑉𝑉𝑉𝑉, 𝛿𝛿𝛿𝛿) = 0 (16) 

 

 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑄𝑄𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑄𝑄(𝑉𝑉𝑉𝑉, 𝛿𝛿𝛿𝛿) = 0 (17) 
  
Where, 𝑖𝑖𝑖𝑖 = 1,2 … 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛 is the number of buses. 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺 and 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺 
are real and reactive power of the generator, 𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷  and 𝑄𝑄𝑄𝑄𝐷𝐷𝐷𝐷 are 
the real and reactive power load of the generator.  
 
b.     Inequality constraints: - 
 

1. Bus voltage limits: 

 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ≤ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 ≤ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (18) 
 

2. Transformer tap-setting limit: 

 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ≤ 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘 ≤ 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (19) 
 

3. Reactive power generation limit: 

 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ≤ 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 ≤ 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 (20) 
 

4. Reactive power source installation limit: 

 𝑄𝑄𝑄𝑄𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ≤ 𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 ≤ 𝑄𝑄𝑄𝑄𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (21) 
 

5. Transmission line apparent power flow limit: 

 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙 ≤ 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (22) 
 
 These limitations represent the system's operational 
restrictions. The control variables include generator 
terminal bus voltages, transformer tap setting, and reactive 
power generated by the capacitor bank. Slack bus voltage, 
load bus voltages, reactive power production, and line 
flow limit where active power is created are state 
variables. The state variables are satisfied by applying a 
penalty to the objective function. Depending on the kind 
of issue, different optimization techniques employ all or 
some of the equations given above. 

III. Optimization Algorithms used in 
Power System 

 There is now a big push in the field of soft computing 
research to find novel optimization strategies based on 
nature. Fig. 2 depicts several approaches to optimization 
strategies. However, many other techniques are being 
proposed by combining one or more of the techniques 
presented. 

A number of traditional mathematical programming-
based approaches have been offered to tackle the reactive 
power dispatch problem. The Newton technique [17], 
Monte Carlo Simulations [20], Linear Programming (LP) 
[21], [22] are examples of these methods. Certain 
disadvantages are, however, mentioned. Such approaches 
using derivatives and gradients, for example, may be 
incapable of determining the global optimum. It is also not 
viable to incorporate the discrete variables associated with 
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B. Optimization Problem Formulation 

B.1     Minimizing Real Power Loss 

The major worry with increasing load is an increase in 
transmission loss as well as a difficulty with voltage 
stability. As a result, when the system loading is gradually 
raised, reactive power assistance is required to maintain 
the voltage stability. As a result, the primary goal of any 
RPP study is to reduce the real power loss, as represented 
by Eq. (14), and to minimize voltage variation at weak 
buses under various loading circumstances. The cost of the 
system rises as a result of the system's significant losses. 
To lower this cost, the device's power loss is minimized 
[38]. As a result, the economic goal is largely to reduce 
active power loss in the transmission system [16]–[18]. It 
may be expressed numerically as: 

 

 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿 = � 𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘�𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖2 + 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖2 + 2𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�
𝑛𝑛𝑛𝑛

k=(i,j)

 (14) 

 
Where, 𝑛𝑛𝑛𝑛 is the number of transmission lines, 𝑔𝑔𝑔𝑔𝑘𝑘𝑘𝑘 is the 
conductance of the branch 𝑘𝑘𝑘𝑘, 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 and 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖  are voltage 
magnitudes at bus 𝑖𝑖𝑖𝑖 and bus 𝑗𝑗𝑗𝑗, 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the voltage angle 
difference between two buses. 

According to Eq. (14), active power loss is a function 
of bus voltages, phase angles, and line conductance. The 
Var sources in the power network, such as generators, 
OLTCs, static capacitors, and FACTS devices can help to 
enhance voltage profile. FACTS devices particularly 
affect line reactance and thus have a great impact on power 
flow control.  

B.2     Minimizing voltage deviation 

 Fitness function for voltage deviation (VD) provides 
information about the minimization of voltage deviation 
magnitudes at load buses. However, keeping a steady 
voltage profile in the power system for secure operation is 
a challenging objective. Mathematically, the reduction of 
(VD) can be characterized as [18], [19]: 
 

 𝑉𝑉𝑉𝑉𝐷𝐷𝐷𝐷 = � |𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 − 1.0|
𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑖𝑖𝑖𝑖=𝑖

 

 

(15) 

where, 𝑁𝑁𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the number of buses. 

B.3     System Constraints 

a. Load flow equality constraint: - 

Nodal active and reactive power balance [16] 
 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑃𝑃(𝑉𝑉𝑉𝑉, 𝛿𝛿𝛿𝛿) = 0 (16) 

 

 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑄𝑄𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑄𝑄(𝑉𝑉𝑉𝑉, 𝛿𝛿𝛿𝛿) = 0 (17) 
  
Where, 𝑖𝑖𝑖𝑖 = 1,2 … 𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛 is the number of buses. 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺 and 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺 
are real and reactive power of the generator, 𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷  and 𝑄𝑄𝑄𝑄𝐷𝐷𝐷𝐷 are 
the real and reactive power load of the generator.  
 
b.     Inequality constraints: - 
 

1. Bus voltage limits: 

 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ≤ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 ≤ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (18) 
 

2. Transformer tap-setting limit: 

 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ≤ 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘 ≤ 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (19) 
 

3. Reactive power generation limit: 

 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ≤ 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 ≤ 𝑄𝑄𝑄𝑄𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 (20) 
 

4. Reactive power source installation limit: 

 𝑄𝑄𝑄𝑄𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ≤ 𝑄𝑄𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 ≤ 𝑄𝑄𝑄𝑄𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (21) 
 

5. Transmission line apparent power flow limit: 

 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙 ≤ 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (22) 
 
 These limitations represent the system's operational 
restrictions. The control variables include generator 
terminal bus voltages, transformer tap setting, and reactive 
power generated by the capacitor bank. Slack bus voltage, 
load bus voltages, reactive power production, and line 
flow limit where active power is created are state 
variables. The state variables are satisfied by applying a 
penalty to the objective function. Depending on the kind 
of issue, different optimization techniques employ all or 
some of the equations given above. 

III. Optimization Algorithms used in 
Power System 

 There is now a big push in the field of soft computing 
research to find novel optimization strategies based on 
nature. Fig. 2 depicts several approaches to optimization 
strategies. However, many other techniques are being 
proposed by combining one or more of the techniques 
presented. 

A number of traditional mathematical programming-
based approaches have been offered to tackle the reactive 
power dispatch problem. The Newton technique [17], 
Monte Carlo Simulations [20], Linear Programming (LP) 
[21], [22] are examples of these methods. Certain 
disadvantages are, however, mentioned. Such approaches 
using derivatives and gradients, for example, may be 
incapable of determining the global optimum. It is also not 
viable to incorporate the discrete variables associated with 
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the tap-changing transformer directly into the algorithm. 
These approaches also have downsides, such as a long 
calculation time and a lack of flexibility for a real system. 
As a result, it is critical to develop more accurate and 
effective algorithms capable of overcoming all of the 
drawbacks of traditional optimization approaches. [23], 
[24]. As a result, classical algorithms are not explored in 
depth in this work, instead focusing on several popular and 
frequently utilized nature-inspired metaheuristics 
approaches. 
 When an optimization issue involves more than one 
objective function, the process of assessing one or more 
optimum solutions is known as multi-objective 

optimization [25]. One of these techniques is multi-
objective differential equation [26]–[28], Eagle Strategy 
Particle Swarm Optimization (EPSO) [29], [30], Genetic 
algorithm (GA) [11], [31]–[35], micro-genetic algorithm 
[10], Enhanced Genetic Algorithm [36], whale 
optimization algorithm (WOA) [37], Artificial Neural 
Network (ANN) [38], Red Wolf Optimization (ERWO) 
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proposed hybrid PSO and ANN to predict the voltage 
stability in the power system network.   

2.     Genetic Algorithm 

Genetic Algorithms (GA) ideas are directly drawn from 
natural evolution [52]. It is based on Darwin's theory of 
evaluation's'survival of the fittest' premise. Furthermore, 
to reach the global optimum, they integrate function 
evaluation with the random exchange of information 
among solutions [53]. The evident limits of PSO, as 
previously mentioned, are less straightforward and 
dependable than GA. This approach is a mixed-integer 
nonlinear optimization problem [11]. GA adheres to the 
flow chart depicted in Fig. 4. 

Chandrasekhar et al, [33] have investigated the use of 
GA in voltage stability improvement. It is based on the 
monitoring of the ‘L-index’ of load buses. Similar 
research was conducted by Wahab et al, [54] where they 
tried to search the optimal transformer tap setting to 
minimize the line losses. Devaraj et al [32] has provided 
an improved Genetic algorithm (GA) approach as a means 
to enhance voltage stability. The suggested approach is 
based on minimizing the maximum of load bus L-indices. 
This problem's optimization variables include generator 
voltages, switchable VAR sources, and transformer tap 
changers.  

 
 

Fig.  3. Flow chart for PSO algorithm 
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based back propagation neural network (GABPNN). It has 
been suggested for estimating voltage stability margins, 
which indicate how close the power system is to voltage 
collapse. The suggested method employs a hybrid 
algorithm that combines a genetic algorithm and a 
backpropagation neural network. Nassar et al. [56] 
conducted a case study in which they used genetic 
algorithms to improve voltage profiles in power networks. 
The condenser bank is allocated using the genetic 
algorithm (GA) approach. 
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The most recent GA optimization scenario [57] yields 

the greatest results. In [58], they discovered that GA may 
be used to optimize complicated system calculations. To 
extract the benefits of both GA and ant algorithm methods, 
overcome their shortcomings, and balance their benefits 
and drawbacks, [41] has proposed a combined algorithm. 
To obtain the initial pheromone distribution, the main 
concept is to apply the genetic algorithm in earlier 
procedures, taking full use of its rapid, random, global 
convergence. In the latter phase, an ant algorithm is 
employed, taking advantage of parallelism, positive 
feedback, high solution efficiency, and so on. The FACTS 
device's optimal locations are also calculated using GA in  
[59]-[61]. Generally, the GA is found to be the best 
algorithm for obtaining voltage stability [8], [62].  
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monitoring of the ‘L-index’ of load buses. Similar 
research was conducted by Wahab et al, [54] where they 
tried to search the optimal transformer tap setting to 
minimize the line losses. Devaraj et al [32] has provided 
an improved Genetic algorithm (GA) approach as a means 
to enhance voltage stability. The suggested approach is 
based on minimizing the maximum of load bus L-indices. 
This problem's optimization variables include generator 
voltages, switchable VAR sources, and transformer tap 
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3.1     Wolf optimization 
 Many swarm intelligence systems resemble some 
animals' hunting and searching habits. However, because 
grey and red wolf optimization mimic the internal 
leadership hierarchy of wolves, the position of the best 
answer may be thoroughly examined by three solutions 
during the search process. Other swarm intelligence 
systems, on the other hand, seek the optimal answer led by 
a single solution. As a result, WOs can substantially 
reduce the likelihood of being premature and falling into 
the local optimum [63]. 

 
Fig.  5. The 2D location vector and next possible positions  

 In the optimization process, the locations of wolves (or 
whales in whale optimization) are pictorially represented 
in Fig. 5 and the location updating can occur based on Eq. 
(23) and (24). 

 𝐷𝐷𝐷𝐷��⃗ = �𝐶𝐶𝐶𝐶.𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝����⃗ (𝑡𝑡𝑡𝑡)− �⃗�𝑋𝑋𝑋(𝑡𝑡𝑡𝑡)� (23) 
 

 �⃗�𝑋𝑋𝑋(𝑡𝑡𝑡𝑡 + 1) = 𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝����⃗ (𝑡𝑡𝑡𝑡)−𝐴𝐴𝐴𝐴.𝐷𝐷𝐷𝐷��⃗  
 

(24) 

where, 𝑡𝑡𝑡𝑡 represents the 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ iteration, 𝐴𝐴𝐴𝐴, and 𝐶𝐶𝐶𝐶 are 
coefficient vectors, 𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝 is the position vector of prey, 𝑋𝑋𝑋𝑋 
represents the wolf position. The vector 𝐴𝐴𝐴𝐴 and 𝐶𝐶𝐶𝐶 can be 
expressed by: 

 𝐴𝐴𝐴𝐴 = 2𝑎𝑎𝑎𝑎. 𝑟𝑟𝑟𝑟1 − �⃗�𝑎𝑎𝑎 (25) 
 

 𝐶𝐶𝐶𝐶 = 2. 𝑟𝑟𝑟𝑟2���⃗  
 

(26) 

where, the coefficient �⃗�𝑎𝑎𝑎 linearly decreases from 2 to 0 with 
the increasing of iteration number, 𝑟𝑟𝑟𝑟1���⃗ and 𝑟𝑟𝑟𝑟2���⃗  are random 
vectors located in the scope [0, 1]. 

The works of literature [64], [65] have proposed a grey 
wolf optimization algorithm for voltage stability 
enhancement. Weak bus determination, orientation, and 
real power loss minimization by Var planning using 
GWOA were also proposed in [66], [67]. Similarly, the 
GWOA along with PSO is proposed for post-fault 
transient stability status prediction in [68]. 
 Lenin [12], [69] in his two distinct papers has made the 
extensive task to provide an improved form of Red Wolf 

Optimization (RWF). In his earlier paper, the optimal 
reactive power dispatch problem (ORPD), has been solved 
by the Enriched Red Wolf Optimization (ERWO) 
algorithm. It is proposed as a hybridization of the wolf 
optimization (WO) algorithm with the particle swarm 
optimization (PSO) algorithm. Each red wolf in the 
approach has a flag vector whose length is equal to the 
entire number of integers in the wolf optimization data. In 
the standard IEEE 30 bus test system, the efficiency of 
ERWO was tested. According to a simulation research, the 
enhanced red wolf optimization (ERWO) approach 
reduces actual power losses and improves voltage 
stability. In the latter case, he tried another algorithm 
called an opposition-based red wolf optimization 
(ORWO) algorithm for the same problem. The red wolf 
optimization method has been combined with opposition-
based learning in this suggested algorithm. The suggested 
algorithm's convergence speed is expected to be enhanced 
by this amalgamate method. To find an enhanced 
candidate solution, estimate the concurrent evaluation of a 
probability and its corresponding opposite that is closer to 
the global optimum than an arbitrary candidate solution. 
The proposed algorithm has been tested in standard IEEE 
14-bus and 300-bus test systems. The simulation results 
demonstrate that the suggested method significantly 
decreased the real power loss.  

3.2     Whale optimization Algorithm 

 Whale optimization is a newly developed algorithm. It 
is also a swarm-based algorithm that is used to solve 
complex optimization problems. It is an algorithm that 
mimics humpback whale hunting behavior. Because of its 
distinct advantages, it has found a place in mature 
population-based methods in a wide range of scientific and 
engineering fields. A novel technique was designed to 
tackle the multi-objective actual power loss and bus 
voltage deviation (VD) minimizations for the grid. Power 
loss reduction utilizing WOA was proposed in reference 
[70] when DGs and shunt capacitors were considered.Ang 
et al, [71] have proposed a multi-objective real power loss 
and voltage deviation minimization technique using 
WOA.  Similarly, [72] has determined the maximum 
loadability limit for PS network. The multi-objective 
WOA is proposed in [73], [74] for optimal allocation and 
sizing of DGs into the distribution system. Furthermore, 
[63] has proposed an improved GWO to achieve the 
proper compromise between exploration and exploitation. 
It is based on the differential evolution and elimination 
mechanism. Furthermore, [75] has proposed WOA for the 
optimal allocation of STATCOM for voltage stability and 
system loadability. Reference [72] has proposed WOA to 
determine the maximum loadability limit for power 
networks. The comparison of WOA result with 
differential evolution algorithm (DE), multi-agent hybrid 
PSO (MAHPSO) and hybridized DE and PSO (DEPSO) 
for IEEE 30- bus and 118-bus are performed.  
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ERWO was tested. According to a simulation research, the 
enhanced red wolf optimization (ERWO) approach 
reduces actual power losses and improves voltage 
stability. In the latter case, he tried another algorithm 
called an opposition-based red wolf optimization 
(ORWO) algorithm for the same problem. The red wolf 
optimization method has been combined with opposition-
based learning in this suggested algorithm. The suggested 
algorithm's convergence speed is expected to be enhanced 
by this amalgamate method. To find an enhanced 
candidate solution, estimate the concurrent evaluation of a 
probability and its corresponding opposite that is closer to 
the global optimum than an arbitrary candidate solution. 
The proposed algorithm has been tested in standard IEEE 
14-bus and 300-bus test systems. The simulation results 
demonstrate that the suggested method significantly 
decreased the real power loss.  

3.2     Whale optimization Algorithm 

 Whale optimization is a newly developed algorithm. It 
is also a swarm-based algorithm that is used to solve 
complex optimization problems. It is an algorithm that 
mimics humpback whale hunting behavior. Because of its 
distinct advantages, it has found a place in mature 
population-based methods in a wide range of scientific and 
engineering fields. A novel technique was designed to 
tackle the multi-objective actual power loss and bus 
voltage deviation (VD) minimizations for the grid. Power 
loss reduction utilizing WOA was proposed in reference 
[70] when DGs and shunt capacitors were considered.Ang 
et al, [71] have proposed a multi-objective real power loss 
and voltage deviation minimization technique using 
WOA.  Similarly, [72] has determined the maximum 
loadability limit for PS network. The multi-objective 
WOA is proposed in [73], [74] for optimal allocation and 
sizing of DGs into the distribution system. Furthermore, 
[63] has proposed an improved GWO to achieve the 
proper compromise between exploration and exploitation. 
It is based on the differential evolution and elimination 
mechanism. Furthermore, [75] has proposed WOA for the 
optimal allocation of STATCOM for voltage stability and 
system loadability. Reference [72] has proposed WOA to 
determine the maximum loadability limit for power 
networks. The comparison of WOA result with 
differential evolution algorithm (DE), multi-agent hybrid 
PSO (MAHPSO) and hybridized DE and PSO (DEPSO) 
for IEEE 30- bus and 118-bus are performed.  
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Recently, machine learning regression approaches have 
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suffers from prediction accuracy. The training data may 
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dependent on the communication method used in the 
electric grid. This difficulty can be exacerbated if the 
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topological changes. 

In today's world, a power system must be operated in 
various operating points using a dependable and secure 
technique. One of the key aspects in achieving this goal is 
a constant evaluation of voltage stability margin (VSM) 
[77]. 
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maximum power at that bus as shown in Fig. 6, then the 
Voltage Stability Margin (VSM) for each load bus may be 
computed as [76]: 
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Where 𝑙𝑙𝑙𝑙 is the total number of load buses in the power 
system.  

Similarly, the voltage stability margin index (VSMI) 
for the network is calculated by: 

 𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑉𝑉𝑉𝑉 = min�
𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖

𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑖𝑖𝑖𝑖
� (28) 

VSMI is a voltage collapse indicator in the power 
system. The VSMI ranges from 1 (no load) to 0 (highest 
load) (maximum loadability). 
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4.1     Artificial Neural Network 

Artificial neural networks (ANNs) have recently been 
proposed for voltage stability monitoring and evaluation 
[78]–[83] because they can correctly identify a highly 
nonlinear relationship and, once trained, can classify fresh 
data much quicker than solving the model analytically. 
However, most of the published work in the field of 
voltage stability used either multilayer perceptron 
networks or backpropagation algorithms to train them. 
The general flow chart for any neural network is presented 
in Fig. 7. 

The reason for using ANN in the assessment of voltage 
stability is as summarized below [78]: 

 
• ANNs can model dynamic, nonlinear, and 

noisy data. Voltage stability evaluation and 
live monitoring are simple tasks for ANNs. 

• To create a successful system design, ANNs 
do not require sophisticated programming, 
perplexing algorithms, or logical inference 
systems. In other words, ANN-based systems 
are simple to put in place. 

• ANN covers arbitrarily defined forms of 
dependent and independent variables and 
requires only a few facts on the process's 
physical backdrop. 

 

 
Fig.  7. Flow chart for a neural network 

 
 

The ANN is proposed, respectively in [84] and [85] for 
the application for voltage control and power flow control 
of using Unified power flow controller (UPFC) and 
studying voltage and power stability margins of the 
electrical power system. Online voltage stability 
monitoring and assessment are performed using ANN 
respectively in [82] and [86]. 
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3.1     Wolf optimization 
 Many swarm intelligence systems resemble some 
animals' hunting and searching habits. However, because 
grey and red wolf optimization mimic the internal 
leadership hierarchy of wolves, the position of the best 
answer may be thoroughly examined by three solutions 
during the search process. Other swarm intelligence 
systems, on the other hand, seek the optimal answer led by 
a single solution. As a result, WOs can substantially 
reduce the likelihood of being premature and falling into 
the local optimum [63]. 

 
Fig.  5. The 2D location vector and next possible positions  

 In the optimization process, the locations of wolves (or 
whales in whale optimization) are pictorially represented 
in Fig. 5 and the location updating can occur based on Eq. 
(23) and (24). 

 𝐷𝐷𝐷𝐷��⃗ = �𝐶𝐶𝐶𝐶.𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝����⃗ (𝑡𝑡𝑡𝑡)− �⃗�𝑋𝑋𝑋(𝑡𝑡𝑡𝑡)� (23) 
 

 �⃗�𝑋𝑋𝑋(𝑡𝑡𝑡𝑡 + 1) = 𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝����⃗ (𝑡𝑡𝑡𝑡)−𝐴𝐴𝐴𝐴.𝐷𝐷𝐷𝐷��⃗  
 

(24) 

where, 𝑡𝑡𝑡𝑡 represents the 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ iteration, 𝐴𝐴𝐴𝐴, and 𝐶𝐶𝐶𝐶 are 
coefficient vectors, 𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝 is the position vector of prey, 𝑋𝑋𝑋𝑋 
represents the wolf position. The vector 𝐴𝐴𝐴𝐴 and 𝐶𝐶𝐶𝐶 can be 
expressed by: 

 𝐴𝐴𝐴𝐴 = 2𝑎𝑎𝑎𝑎. 𝑟𝑟𝑟𝑟1 − �⃗�𝑎𝑎𝑎 (25) 
 

 𝐶𝐶𝐶𝐶 = 2. 𝑟𝑟𝑟𝑟2���⃗  
 

(26) 

where, the coefficient �⃗�𝑎𝑎𝑎 linearly decreases from 2 to 0 with 
the increasing of iteration number, 𝑟𝑟𝑟𝑟1���⃗ and 𝑟𝑟𝑟𝑟2���⃗  are random 
vectors located in the scope [0, 1]. 

The works of literature [64], [65] have proposed a grey 
wolf optimization algorithm for voltage stability 
enhancement. Weak bus determination, orientation, and 
real power loss minimization by Var planning using 
GWOA were also proposed in [66], [67]. Similarly, the 
GWOA along with PSO is proposed for post-fault 
transient stability status prediction in [68]. 
 Lenin [12], [69] in his two distinct papers has made the 
extensive task to provide an improved form of Red Wolf 

Optimization (RWF). In his earlier paper, the optimal 
reactive power dispatch problem (ORPD), has been solved 
by the Enriched Red Wolf Optimization (ERWO) 
algorithm. It is proposed as a hybridization of the wolf 
optimization (WO) algorithm with the particle swarm 
optimization (PSO) algorithm. Each red wolf in the 
approach has a flag vector whose length is equal to the 
entire number of integers in the wolf optimization data. In 
the standard IEEE 30 bus test system, the efficiency of 
ERWO was tested. According to a simulation research, the 
enhanced red wolf optimization (ERWO) approach 
reduces actual power losses and improves voltage 
stability. In the latter case, he tried another algorithm 
called an opposition-based red wolf optimization 
(ORWO) algorithm for the same problem. The red wolf 
optimization method has been combined with opposition-
based learning in this suggested algorithm. The suggested 
algorithm's convergence speed is expected to be enhanced 
by this amalgamate method. To find an enhanced 
candidate solution, estimate the concurrent evaluation of a 
probability and its corresponding opposite that is closer to 
the global optimum than an arbitrary candidate solution. 
The proposed algorithm has been tested in standard IEEE 
14-bus and 300-bus test systems. The simulation results 
demonstrate that the suggested method significantly 
decreased the real power loss.  

3.2     Whale optimization Algorithm 

 Whale optimization is a newly developed algorithm. It 
is also a swarm-based algorithm that is used to solve 
complex optimization problems. It is an algorithm that 
mimics humpback whale hunting behavior. Because of its 
distinct advantages, it has found a place in mature 
population-based methods in a wide range of scientific and 
engineering fields. A novel technique was designed to 
tackle the multi-objective actual power loss and bus 
voltage deviation (VD) minimizations for the grid. Power 
loss reduction utilizing WOA was proposed in reference 
[70] when DGs and shunt capacitors were considered.Ang 
et al, [71] have proposed a multi-objective real power loss 
and voltage deviation minimization technique using 
WOA.  Similarly, [72] has determined the maximum 
loadability limit for PS network. The multi-objective 
WOA is proposed in [73], [74] for optimal allocation and 
sizing of DGs into the distribution system. Furthermore, 
[63] has proposed an improved GWO to achieve the 
proper compromise between exploration and exploitation. 
It is based on the differential evolution and elimination 
mechanism. Furthermore, [75] has proposed WOA for the 
optimal allocation of STATCOM for voltage stability and 
system loadability. Reference [72] has proposed WOA to 
determine the maximum loadability limit for power 
networks. The comparison of WOA result with 
differential evolution algorithm (DE), multi-agent hybrid 
PSO (MAHPSO) and hybridized DE and PSO (DEPSO) 
for IEEE 30- bus and 118-bus are performed.  
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Recently, machine learning regression approaches have 
piqued the curiosity of many people who want to analyze 
voltage stability margins in power systems for online use. 
The performance of Gaussian Process Regression (GPR), 
artificial neural network (ANN), support vector machine 
(SVM), and decision tree (DT), which are frequently used 
regression models in machine learning, are analyzed and 
compared in [76]. If the training data is limited, ANN 
suffers from prediction accuracy. The training data may 
not be sufficient in the actual world since it is very 
dependent on the communication method used in the 
electric grid. This difficulty can be exacerbated if the 
model is subjected to unforeseen circumstances and 
topological changes. 

In today's world, a power system must be operated in 
various operating points using a dependable and secure 
technique. One of the key aspects in achieving this goal is 
a constant evaluation of voltage stability margin (VSM) 
[77]. 

The primary goal of voltage stability analysis is to 
evaluate if the power system's present operating point is 
stable. If the total active power provided to the load at the 
current operating point is 𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  and 𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the 
maximum power at that bus as shown in Fig. 6, then the 
Voltage Stability Margin (VSM) for each load bus may be 
computed as [76]: 
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Where 𝑙𝑙𝑙𝑙 is the total number of load buses in the power 
system.  

Similarly, the voltage stability margin index (VSMI) 
for the network is calculated by: 

 𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑉𝑉𝑉𝑉 = min�
𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖

𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑖𝑖𝑖𝑖
� (28) 

VSMI is a voltage collapse indicator in the power 
system. The VSMI ranges from 1 (no load) to 0 (highest 
load) (maximum loadability). 
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4.1     Artificial Neural Network 

Artificial neural networks (ANNs) have recently been 
proposed for voltage stability monitoring and evaluation 
[78]–[83] because they can correctly identify a highly 
nonlinear relationship and, once trained, can classify fresh 
data much quicker than solving the model analytically. 
However, most of the published work in the field of 
voltage stability used either multilayer perceptron 
networks or backpropagation algorithms to train them. 
The general flow chart for any neural network is presented 
in Fig. 7. 

The reason for using ANN in the assessment of voltage 
stability is as summarized below [78]: 

 
• ANNs can model dynamic, nonlinear, and 

noisy data. Voltage stability evaluation and 
live monitoring are simple tasks for ANNs. 

• To create a successful system design, ANNs 
do not require sophisticated programming, 
perplexing algorithms, or logical inference 
systems. In other words, ANN-based systems 
are simple to put in place. 

• ANN covers arbitrarily defined forms of 
dependent and independent variables and 
requires only a few facts on the process's 
physical backdrop. 

 

 
Fig.  7. Flow chart for a neural network 

 
 

The ANN is proposed, respectively in [84] and [85] for 
the application for voltage control and power flow control 
of using Unified power flow controller (UPFC) and 
studying voltage and power stability margins of the 
electrical power system. Online voltage stability 
monitoring and assessment are performed using ANN 
respectively in [82] and [86]. 
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model is subjected to unforeseen circumstances and 
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In today's world, a power system must be operated in 
various operating points using a dependable and secure 
technique. One of the key aspects in achieving this goal is 
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Where 𝑙𝑙𝑙𝑙 is the total number of load buses in the power 
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Similarly, the voltage stability margin index (VSMI) 
for the network is calculated by: 
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4.2     Convolutional Neural Network 

CNN [87], [88] is also proposed as a fast assessment of 
short-term and transient voltage stability. The radial basis 
function neural network outperforms the feedforward 
neural network in estimating voltage stability margin [89]. 

 
4.3     Fuzzy Logic System 

When the fuzzy set idea is employed in power system 
analysis, only a small amount of work has been done in 
the application of fuzzy theory to voltage stability 
enhancement. Reference [90] used fuzzy approaches to 
locate optimal placement and sizing of multiple DGs. 
Reference [91] performed voltage stability analysis based 
on adaptive FL considering load fluctuation. Similarly, the 
PSS was designed for a multi-machine system having 
dynamic loads using the adaptive-neuro fuzzy system in 
[92]. Reference [93] proposed a damping controller to 
minimize the uncertainties to have improved PS stability 
using wide-area fuzzy-2 logic. Moreover, reference [94], 
the voltage stability is predicted using an L-index, and the 
accompanying uncertainties are efficiently represented. 
However, more of the fuzzy logic algorithm is adapted in 
DGs and micro-grids [95]–[99]. 

The fuzzy logic system can also be used along with the 
FACTS devices. For instance, [100] used Fuzzy-PID-
based STATCOM to analyze power system stability. 
Similarly, [101] used fuzzy logic for examining the 
performance of UPFC.  

Some combinations of fuzzy logic and neural networks 
(ANFIS) are combined to obtain the hybrid behavior in the 
optimization. Reference [102], [103] have proposed 
ANFIS to enhance voltage stability on wind farms using 
the optimally controlled SVC. Reference [102] proposed 
ANFIS and PSO algorithm to determine the optimal 
location of STATCOM for voltage stability enhancement. 
Reference [105], [106] proposed ANFIS as the hybrid 
algorithm to further improve the results. 

IV. Result and Discussion 
The best algorithm for solving an optimization issue is 

largely determined by the problem type. A linear solver, 
such as the Simplex technique, can be used to efficiently 
solve a linear programming issue. A convex programming 
procedure, such as the interior-point technique, can be 
used to solve a nonlinear convex programming issue. 
Similarly, a nonconvex nonlinear programming issue can 
be effectively addressed using a nonconvex method. 
However, when an issue is extremely complicated and it 
is impossible to determine the nature of the problem, it can 
be solved utilizing metaheuristic algorithms such as the 
genetic algorithm, particle swarm optimization, 
differential evolution, and so on. In brief, the best 
optimization algorithm is problem-specific. 

 
 
It is determined by a variety of factors, including:  

1. Computational complexity 
2. The number of iterations 
3. Mutation factors/particle speed/initial weights 

 
For instance, if computing complexity is not of 

concern, Differential Evolution provides a more accurate 
solution to issues. Remember that all these options are for 
offline tuning since online tuning may not be a viable 
answer in terms of implementation. 

The comparative analysis is performed on few widely 
used algorithms. It is found out that WOA followed by 
PSO gives the minimum loss as shown in Table I.  

 
TABLE I 

COMPARISON OF ACTIVE POWER LOSSES BY DIFFERENT METHODS 

Optimization 
Method 

Losses before 
Optimization 

(MW) 

Losses after 
Optimization (MW) 

Genetic 
Algorithm 14.72 13.91 

Red Wolf 
Optimization 14.72 13.87 

Particle 
Swarm 

Optimization 
14.72 13.85 

Wale 
Optimization 

Algorithm 
14.72 13.70 

 
 Nevertheless, the Genetic Algorithm was found to be 
yielding the best performance when the voltage deviation 
is taken into consideration as presented in Table II. The 
results are further improved when two or more 
optimization techniques are used parallelly. However, it 
happens at the cost of complexity, cost, and simulation 
time.   
 

TABLE II 
COMPARISON OF ACTIVE POWER LOSSES CONSIDERING VOLTAGE 

DEVIATION BY DIFFERENT METHODS 

Optimization 
Method 

Losses before 
Optimization 

(MW) 

Losses after 
Optimization (MW) 

Genetic 
Algorithm 0.44 0.295 

Red Wolf 
Optimization 0.44 0.298 

Particle 
Swam 

Optimization 
0.44 0.297 

Wale 
Optimization 

Algorithm 
0.44 0.296 

 
    As it was evident from Fig. 1, the voltage stability marin 
is well maintained within the regulation by improving the 
voltage at the weaker buses by the use of optimization 
techniques.   
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solution to issues. Remember that all these options are for 
offline tuning since online tuning may not be a viable 
answer in terms of implementation. 
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V. Recommendation 

It is not so viable for Bhutanese power operators to go 
for the FACTS devices provided with the fact that Bhutan 
has control of just about 30 % of whole power generation 
although 99 % of households in Bhutan are connected to 
electricity with less than 700,000 people. The payback 
period and the impact made to the power system would 
not be prominent even if these devices are installed.  The 
70 % power is exported to India via five different export 
points. The optimum dispatch needs to be evaluated 
because it enhances system security, voltage proficiency, 
power transfer capability, and overall network efficiency. 

The Bhutanese power system’s situation is dependent 
on how the Indian grid performs. Therefore, it is 
recommended that the controller system in the generation 
is improved, encourage interconnection of DGs at the 
weaker buses, use optimal tap settings in the transformer 
and explore economic dispatch ways to export the power. 
This can be achieved by the use of the appropriate 
optimization technique discussed in this paper. 

Bhutan might potentially benefit from a hybrid 
artificial neural network-based technique for monitoring 
the online voltage security of electric power systems. 
Voltage stability can be assessed completely, using a 
proper security index, and locally, by establishing 
adequate voltage margins for recognizing the buses of the 
system where the instability phenomena occur [80]. Based 
on the online monitoring system, Indian counterparts can 
always be cautioned on the issue and ask them to commit 
their loads to meet the requirement. 

VI. Conclusion 
In this paper, it is investigated that transmission loss, 

voltage index, and voltage deviation can be minimized 
with the use of various optimization methods. It becomes 
difficult with more complex problems to be solved but 
hybrid optimization techniques are the ultimate solution. 
However, the best algorithm for solving an optimization 
issue is largely determined by the problem type. For 
example, a linear solver, such as the Simplex technique, 
can be used to efficiently solve a linear programming 
issue. However, when an issue is extremely complicated 
and it is impossible to determine the nature of the problem, 
it can be solved utilizing metaheuristic algorithms such as 
the genetic algorithm, particle swarm optimization, and 
differential evolution. Artificial intelligent techniques are 
in their infant state in solving the optimization problem, 
but it is expected that it will be dominating soon as lots of 
research are done on it. Bhutan however can still think of 
focusing on the cheap, fast, and easy optimization 
techniques which can help to maintain generation, 
transmission, and distribution systems at optimal running 
conditions. For instance, having a good control system in 
the generation, optimal tap setting for every transformer, 
and encouraging DG integration at weak buses.   
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V. Recommendation 

It is not so viable for Bhutanese power operators to go 
for the FACTS devices provided with the fact that Bhutan 
has control of just about 30 % of whole power generation 
although 99 % of households in Bhutan are connected to 
electricity with less than 700,000 people. The payback 
period and the impact made to the power system would 
not be prominent even if these devices are installed.  The 
70 % power is exported to India via five different export 
points. The optimum dispatch needs to be evaluated 
because it enhances system security, voltage proficiency, 
power transfer capability, and overall network efficiency. 

The Bhutanese power system’s situation is dependent 
on how the Indian grid performs. Therefore, it is 
recommended that the controller system in the generation 
is improved, encourage interconnection of DGs at the 
weaker buses, use optimal tap settings in the transformer 
and explore economic dispatch ways to export the power. 
This can be achieved by the use of the appropriate 
optimization technique discussed in this paper. 

Bhutan might potentially benefit from a hybrid 
artificial neural network-based technique for monitoring 
the online voltage security of electric power systems. 
Voltage stability can be assessed completely, using a 
proper security index, and locally, by establishing 
adequate voltage margins for recognizing the buses of the 
system where the instability phenomena occur [80]. Based 
on the online monitoring system, Indian counterparts can 
always be cautioned on the issue and ask them to commit 
their loads to meet the requirement. 

VI. Conclusion 
In this paper, it is investigated that transmission loss, 

voltage index, and voltage deviation can be minimized 
with the use of various optimization methods. It becomes 
difficult with more complex problems to be solved but 
hybrid optimization techniques are the ultimate solution. 
However, the best algorithm for solving an optimization 
issue is largely determined by the problem type. For 
example, a linear solver, such as the Simplex technique, 
can be used to efficiently solve a linear programming 
issue. However, when an issue is extremely complicated 
and it is impossible to determine the nature of the problem, 
it can be solved utilizing metaheuristic algorithms such as 
the genetic algorithm, particle swarm optimization, and 
differential evolution. Artificial intelligent techniques are 
in their infant state in solving the optimization problem, 
but it is expected that it will be dominating soon as lots of 
research are done on it. Bhutan however can still think of 
focusing on the cheap, fast, and easy optimization 
techniques which can help to maintain generation, 
transmission, and distribution systems at optimal running 
conditions. For instance, having a good control system in 
the generation, optimal tap setting for every transformer, 
and encouraging DG integration at weak buses.   
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for the FACTS devices provided with the fact that Bhutan 
has control of just about 30 % of whole power generation 
although 99 % of households in Bhutan are connected to 
electricity with less than 700,000 people. The payback 
period and the impact made to the power system would 
not be prominent even if these devices are installed.  The 
70 % power is exported to India via five different export 
points. The optimum dispatch needs to be evaluated 
because it enhances system security, voltage proficiency, 
power transfer capability, and overall network efficiency. 

The Bhutanese power system’s situation is dependent 
on how the Indian grid performs. Therefore, it is 
recommended that the controller system in the generation 
is improved, encourage interconnection of DGs at the 
weaker buses, use optimal tap settings in the transformer 
and explore economic dispatch ways to export the power. 
This can be achieved by the use of the appropriate 
optimization technique discussed in this paper. 

Bhutan might potentially benefit from a hybrid 
artificial neural network-based technique for monitoring 
the online voltage security of electric power systems. 
Voltage stability can be assessed completely, using a 
proper security index, and locally, by establishing 
adequate voltage margins for recognizing the buses of the 
system where the instability phenomena occur [80]. Based 
on the online monitoring system, Indian counterparts can 
always be cautioned on the issue and ask them to commit 
their loads to meet the requirement. 
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with the use of various optimization methods. It becomes 
difficult with more complex problems to be solved but 
hybrid optimization techniques are the ultimate solution. 
However, the best algorithm for solving an optimization 
issue is largely determined by the problem type. For 
example, a linear solver, such as the Simplex technique, 
can be used to efficiently solve a linear programming 
issue. However, when an issue is extremely complicated 
and it is impossible to determine the nature of the problem, 
it can be solved utilizing metaheuristic algorithms such as 
the genetic algorithm, particle swarm optimization, and 
differential evolution. Artificial intelligent techniques are 
in their infant state in solving the optimization problem, 
but it is expected that it will be dominating soon as lots of 
research are done on it. Bhutan however can still think of 
focusing on the cheap, fast, and easy optimization 
techniques which can help to maintain generation, 
transmission, and distribution systems at optimal running 
conditions. For instance, having a good control system in 
the generation, optimal tap setting for every transformer, 
and encouraging DG integration at weak buses.   
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V. Recommendation 

It is not so viable for Bhutanese power operators to go 
for the FACTS devices provided with the fact that Bhutan 
has control of just about 30 % of whole power generation 
although 99 % of households in Bhutan are connected to 
electricity with less than 700,000 people. The payback 
period and the impact made to the power system would 
not be prominent even if these devices are installed.  The 
70 % power is exported to India via five different export 
points. The optimum dispatch needs to be evaluated 
because it enhances system security, voltage proficiency, 
power transfer capability, and overall network efficiency. 

The Bhutanese power system’s situation is dependent 
on how the Indian grid performs. Therefore, it is 
recommended that the controller system in the generation 
is improved, encourage interconnection of DGs at the 
weaker buses, use optimal tap settings in the transformer 
and explore economic dispatch ways to export the power. 
This can be achieved by the use of the appropriate 
optimization technique discussed in this paper. 

Bhutan might potentially benefit from a hybrid 
artificial neural network-based technique for monitoring 
the online voltage security of electric power systems. 
Voltage stability can be assessed completely, using a 
proper security index, and locally, by establishing 
adequate voltage margins for recognizing the buses of the 
system where the instability phenomena occur [80]. Based 
on the online monitoring system, Indian counterparts can 
always be cautioned on the issue and ask them to commit 
their loads to meet the requirement. 

VI. Conclusion 
In this paper, it is investigated that transmission loss, 

voltage index, and voltage deviation can be minimized 
with the use of various optimization methods. It becomes 
difficult with more complex problems to be solved but 
hybrid optimization techniques are the ultimate solution. 
However, the best algorithm for solving an optimization 
issue is largely determined by the problem type. For 
example, a linear solver, such as the Simplex technique, 
can be used to efficiently solve a linear programming 
issue. However, when an issue is extremely complicated 
and it is impossible to determine the nature of the problem, 
it can be solved utilizing metaheuristic algorithms such as 
the genetic algorithm, particle swarm optimization, and 
differential evolution. Artificial intelligent techniques are 
in their infant state in solving the optimization problem, 
but it is expected that it will be dominating soon as lots of 
research are done on it. Bhutan however can still think of 
focusing on the cheap, fast, and easy optimization 
techniques which can help to maintain generation, 
transmission, and distribution systems at optimal running 
conditions. For instance, having a good control system in 
the generation, optimal tap setting for every transformer, 
and encouraging DG integration at weak buses.   
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