
ISSN: 2600 - 7495         eISSN: 2600-9633         IJEEAS,   Vol. 4,   No. 2,   October 2021

Improving Stand-Alone Hybrid Generation System Using Sliding Mode Control Approach

25

                       

 
 

ISSN: 2600-7495       eISSN: 2600-9633       IJEEAS Vol.4, No. 2, October 2021 

Improving Stand-Alone Hybrid Generation System Using Sliding 
Mode Control Approach 

 
 

Ridha Benadli1*, Brahim Khiari1, Marwen Bjaoui1, Anis Sellami2 
1LANSER Laboratory/CRTEn B.P.95 Hammam-Lif 2050, Tunis-Tunisia 

2Research unit: LISIER, National Higher Engineering School of Tunis,Tunis-Tunisia 
*corresponding author: ridhabenadly@gmail.com 

 
 
Abstract –This paper presents a robust sliding mode control (SMC) to improve the power quality 
of a stand-alone hybrid power system. The considered hybrid system includes photovoltaic (PV), 
wind turbine (WT) based on permanent magnet synchronous generator (PMSG) and battery 
energy storage systems (BESS). The optimization of the photovoltaic system is powered by a set of 
Adaptive Perturbation and Observation Algorithm Method (APOAM) to search optimum working 
of this source. A SMC is utilized to manage the PV voltage to achieve the Maximum Power Point 
(MPP) by altering the obligation duty cycle. For the wind generation system, a maximum power 
extraction based on a SMC is proposed for the permanent magnet synchronous generator 
(PMSG). This study develops non-linear controllers with an SMC method for a PV/Wind/battery 
system including a boost converter, bidirectional buck-boost converter and voltage source 
inverter (VSI). Performance verification in MATLAB/Simulink have obviously exhibited the 
robustness and the performance of the control strategies developed for the power converters 
framework compared with the conventional PI controller. It is observed from the simulation 
results that the average THD value is very small compared to the PI controller, around 3.1% 
compared to 3.91%. Hence, the power quality and the stability of the whole hybrid system are 
widely improved using SMC compared to other classical PI techniques.   
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I.  Introduction 
The combination of renewable energy sources allows 

for better energy availability and optimizes maximum 
power generation systems, and one or more devices 
storage ensure the availability of energy. Among the 
renewable energy sources, photovoltaic and wind have 
interesting possibilities for exploitation at competitive 
costs and combining these two sources will ensure 
continuity of production of electrical energy and limit the 
climate factors dependency since they have the 
advantage of complementing each other.   

In this context, the stand-alone hybrid renewable 
energy systems (HRES) was presented previously by few 
researchers [1]-[6], where the authors have been studying 
the modeling and control of this system. Several 
convincing results can be found in these works, however, 
the authors have not applied intelligent techniques for 
power converters. The HRES studied has a dynamic 
behaviour that depends on several factors, which are: the 

system constraints and the appearance of defects (i.e. 
sudden load change, unbalanced load, and nonlinear 
load). In these RES applications, the control technique 
commonly used for power converters is the PI controller. 
However, the elements made up of these production 
systems have a non-linear structure, resulting in a loss of 
performance and stability. Motivated by this key 
limitation of these research in [1]-[7], we have conceived 
the integration of non-linear control strategies, especially 
those called advanced control to improve the efficiency 
of the HRES. These strategies are mainly developed to 
follow the demanded power of each element composed 
of the global system, to use optimally the energy sources 
and to regulate the DC bus voltage of the HRES. 

The voltage source inverter (VSI) is required in the 
production system for voltage and frequency regulation 
at the Point of Common Coupling (PCC). The 
performances obtained are closely evaluated in terms of 
the dynamic response time of the system, the steady-state 
error, and the total harmonic distortion (THD). 
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Furthermore, the nature of VSI yield voltage is intensely 
influenced by the disturbances of the load, for example 
sudden load change and nonlinear load. Subsequently, 
the performance of the control strategy is very dependent 
on the dynamic characteristics of the load. In the 
literature, several techniques have been proposed for the 
control of VSI in islanded micro-grid [2],[8]. In [6] - [8], 
a traditional PI controller has been explored to control 
the VSI operating in islanded micro-grid with a 
reasonably adjusted load condition. However, this 
control technique can not cover the substantial load 
variation (the yield voltage as a lot of the relentless state 
error could not ensure the robustness of the system and 
its THD is not acceptable due to the non-linear load).  
Reference [9] has presented a PI technique to control the 
VSI for a HRES composed of WT and PV panels. In this 
case, the frequency and voltage regulation were 
performed but the non-linear load and unbalanced load 
are not considered which will make the system 
unreliable. Recently, advanced controllers have been 
extensively applied to the VSI like the multi resonant 
control [10], integral resonant control [11], repetitive 
control [12], predictive controller [13] and feedback 
linearization [14]. However, these control strategies are 
reasonable for only adjusted load conditions, but not to 
cover the expansive load variation.   

The sliding mode control (SMC) is a robust, 
nonlinear type controller that was initially introduced to 
control the variable structure systems [15]. Its main 
advantages are the guarantee of stability and robustness 
against external disturbances variations and parametric 
disturbances [16]. These properties make this technique 
suitable for the control of power converters system in an 
island micro-grid with non-linear loads [15]. In a 
variable structure system using SMC, it is found that 
PWM based SMC using equivalent control law is the 
most common and widely used approach for controlling 
the power converters in an islanded micro-grid [25],[26]. 

This study develops non-linear controllers with SMC 
for a hybrid system including boost dc-dc converter, 
bidirectional dc-dc buck-boost converter and VSI. The 
architecture of the proposed stand-alone HRES includes 
two renewable energy sources, the PMSG and PV array, 
and the energy storage devices (BESS) as presented in 
Fig.1. Each element in the block is interconnected 
through its power converter (dc-dc or ac/dc) controlled 
by its local control law and connected to the common dc 
bus.  The PV array is connected through a boost dc-dc 
converter for tracking the maximum power point MPP 
by the MPPT technique. The wind subsystem involving a 
turbine equipped with a PMSG and a VSI to extract MPP 
from the VSWT. Furthermore, the battery has a 
bidirectional dc-dc converter, which adjusts the voltage 
levels and allows the charging and discharging of the 
storage device. On the other hand, the ac load has a VSI, 
which makes it possible, thanks to the control, to regulate 
the voltage and the frequency at the PCC in the presence 
of various conditions. 
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Fig. 1. Proposed configuration of HRES 
 

II. Modeling components of the hybrid 
system  

A.    PV system model 

 A single diode model PV cell is used in this paper in 
order to describe with good accuracy of the electrical 
behavior of a PV cell. This model is widely used in many 
literatures [1],[2],[7], where the electric model consists 
of a generator current in parallel with a diode and a 
resistance shunt Rsh; this set is itself in series with a 
second resistor Rs. The output current Ipv depending on 
the output voltage Vpv of a PV array is given by:  

   

exp 1pv s pv
pv p ph s s

p

p pv s pv

sh p

V R IqI N I N I
nKT Ns N

N V R I
R Ns N

                
 

   
 

   (1) 

where Iph is the photocurrent, Is is the reverse saturation 
current, n is the ideality factor, q is the electron charge (q 
= 1.6.10−19), k the Boltzmann’s constant (k = 1.38.10-23), 
and T is the temperature, Rs is the intrinsic series 
resistance, Rsh is the equivalent shunt resistance. Ns and 
Np represent the number of modules in series and in 
parallel respectively. The PV array has 5 modules 
connected in series and 5 modules connected in parallel 
for providing 7.625 kW peak power in STC (Standard 
Test Conditions): Insolation (G) of 1 kW/m2 and cell 
temperature (T) of 25°C. The output power-voltage-
current characteristics, depending on the insolation and 
temperature, are presented in Fig. 2.   
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Fig. 2.  Ppv-Vpv-Ipv output characteristics: (a) for different values of G at 

constant T of 25 ºC 

B. Wind turbine model 

The mechanical power retrieved by the blades of a 
wind turbine is given by the following relationship [20]: 

 

                     31 ,
2
  w p wP C Av                                     

(2) 
 
where ρ is the air density (kg/m3), vw is the wind speed in 
m/s and Cp is the turbine rotor power coefficient. The 
speed ratio   is dependent on rotor speed and wind 
speed, which can be given by: 
 

                             m

w

Rw
v

                                    (3) 

where mw and R is the rotor speed and radius of the wind 
turbine. From (2) and (3), we obtain the expression of 
mechanical torque generated by the wind turbine. 
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 The wind turbine is modeled by equation (4) in which 
only depends of variables wind turbine rotor speed wm 
and the tip speed ratio . The wind turbine can produce 
maximum power when the coefficient of power is always 
at its maximum value, we have Cp = Cpmax 

which 
corresponds to an optimum value of the tip speed ratio . 
In these conditions, the target optimum torque can be 
given by: 

                      2

_ _m opt opt m optT k w                              
(5) 
where              
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 Fig.3 shows the output characteristics generated by 
turbine blades depending on the rotation rotor speed at 
each wind speed, where the red curve represents the 
optimum target. It is noted from this figure that the 
optimality of power is achieved when the generator 
torque follows the optimum torque curve. The goal of the 
MPPT control is to allow the wind turbine to provide the 
maximum possible power given by this curve. 
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Fig. 3. Output characteristics generated by a turbine blade under 

different wind speeds 

C. Battery model 

 The lead-acid battery is used as a storage device which 
is connected to a common dc link capacitor through a 
bidirectional buck-boost dc-dc converter. The equivalent 
model of this storage is composed of a perfect source 
voltage in series with a resistor as a constant resistance 
and the terminal voltage is described by [2].  

III. Control strategies of the hybrid energy 
system 

 

A. MPPT control 

   To optimize the production of electrical energy from 
the photovoltaic source regardless of the atmospheric 
conditions, the static converter is equipped with an 
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Fig. 3. Output characteristics generated by a turbine blade under 
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C. Battery model 

 The lead-acid battery is used as a storage device which 
is connected to a common dc link capacitor through a 
bidirectional buck-boost dc-dc converter. The equivalent 
model of this storage is composed of a perfect source 
voltage in series with a resistor as a constant resistance 
and the terminal voltage is described by [2].  
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P&O and InCond methods because they are simple and 
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where kpv is adaptive step gain which depends of state 
variation of the power. 
 The computation of a state model is necessary for the 
synthesis of this control law. This requires the 
characterization of the system by a mathematical 
equation reflecting the behaviour of the PV-boost 
converter. The following equation is the mathematical 
representation of the relationship of the output of the PV 
and the input of the boost converter as shown in Fig.1 (if 
Rs=0, Rsh=). 
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MPPT control. Several methods of MPPT have been 
proposed in the literature, such as P&O method, Sliding 
Mode Controller (SMC) method, InCond method, fuzzy-
neural method and General Regression Neural Network 
[1]-[7],18]. The most popular MPPT in this field are the 
P&O and InCond methods because they are simple and 
inexpensive.  

In order to extract maximum power from the PV 
source, we must act on the boost converter by the action 
on the duty cycle. In our study, we chose the Adaptive 
P&O Algorithm based SMC.  
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The flow chart of this method is illustrated in Fig. 6. 
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B. Control of PMSG 

The wind turbine is controlled by a VSC with SVPWM, 
which imposes the voltages (vsa, vsb, vsc) of the phases of 
PMSG.  
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Fig. 6. Control of PMSG 

We chose to control the torque given in equation (6).  
In this area, the SMC will be outlined, for the present 
control loops of Fig.1. Characterize the accompanying 
sliding surfaces 
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where Isdref, I sqref are the reference variables for Isd, Isq, 
respectively. The control law is outlined forcing the 
sliding mode presence condition for surfaces 0s ssi si  . 
 The control input is chosen to have the structure as 
follows 
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where ksi is a positive gain. 
 The equivalent control information is acquired from 
the invariance condition and given by the accompanying 
condition as 0  and  0si si si eqiS S u u    . Condensing, 
the expression for the equivalent control ueqsi terms can 
be resolved as:  
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C.   BESS Control 

       The block diagram of the proposed control of the 
bidirectional buck-boost dc-dc converter using sliding 
mode current controller is shown in Fig. 7. The sliding 
surface is defined for the regulation of the input current 
of the buck-boost converter as follows. 
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variables, which are defined as 
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 The parameters 1 , 2 , and 3 are positive values 
determined by the resolution of the differential equation 
using the root locations in order to have the convergence 
appropriates the sliding surface to zero. Similar to the 
control of the boost converter, the SMC buck-boost dc-dc 
converter operates at a constant switching frequency by 
employing PWM and its control law is given in equation 
(16). 
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Fig. 7. Control of BESS 

D. Stand-alone control mode VSC 

Fig. 8 demonstrates the block diagram of the proposed 
stand-alone control mode. The sliding surface of this 
control is defined as follows. 
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where VLdref, VLqref, ILdref, ILqref  are the desired load current 
and voltage in d-and q-axes respectively. The goal of the 
proposed control calculation appeares in Fig. 9 is to 
direct the consistent load voltage and recurrence within 
the sight of different conditions. To accomplish these 
destinations, the accompanying conditions are forced: 
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where VLL is the line-line load voltage and f is the load 
frequency, which is equal to 50 Hz.  The control input is 
defined as follows: 
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where kmi is a positive gain. 
 The equivalent control input is obtained from the 
invariance condition and given by the accompanying 
condition as 0  and  0 .S S u umi mi mi eqmi    . 
Therefore, the expression for the equivalent control 
terms ueqi can be obtained as: 
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 The objective of SMC is to guarantee the convergence 
of the operation points to predetermine sliding boundary. 
To verify the stability of the system, Lyapunov function 
candidates are used . 0mi mis s . At that point the range 

of kmi can be determined as follows:  
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Fig. 8. Control VSC for stand-alone mode 

IV. Simulation results 
Different simulations results are used to analyze the 

dynamic performance of the HRES are presented in this 
work. The overall configuration shown in Fig. 1 of 
HRES is simulated by utilizing the MATLAB/Simulink. 
The dc-link voltage is controlled at 700 V. The 
distribution power of the HRES is based on the variable 
input source. Specifically, the wind speed increases from 
10m/s to 14m/s at t=0.3s. The solar irradiation increased 
from 0.6 kW/m2 to 1 kW/m2 at t=0.2s and decreased 
from 1kW/m2 to 0.8 kW/m2 at t=0.4s, while the 
temperature is constant at 25°C. 
     The simulation is executed to illustrate the excellent 
performance of the proposed HRES controller under 
following different cases: case 1) Linear load is 
connected to the system at t = 0s and is disconnected at t 
= 0.3s; case 2) nonlinear load (three-phase diode 
rectifier, Lload =10 mH, Rload = 50 Ω is connected to 
system at period t[0.2 0.3]s; case 3) Increased  of 
resistive load by 100% at period t[0.3 0.4]; case 4) 
unbalanced resistive load (RLb = 87.5 %RLa, RLc = 75% 
RLa) at period t[0.4 0.5].  Fig. 9 shows the control 
performance of PV system with solar irradiance 
variations whose data sets. It is seen from this figure that 
the PV system controller tracks the MPPs of the solar 
energy regardless of the rapidly changing wind speed 
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destinations, the accompanying conditions are forced: 
 

     

      

0          

. 2. . .

V VLdref LL
VLqref

t f t  







 

                              (19) 

 
where VLL is the line-line load voltage and f is the load 
frequency, which is equal to 50 Hz.  The control input is 
defined as follows: 
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where kmi is a positive gain. 
 The equivalent control input is obtained from the 
invariance condition and given by the accompanying 
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Therefore, the expression for the equivalent control 
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 The objective of SMC is to guarantee the convergence 
of the operation points to predetermine sliding boundary. 
To verify the stability of the system, Lyapunov function 
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IV. Simulation results 
Different simulations results are used to analyze the 

dynamic performance of the HRES are presented in this 
work. The overall configuration shown in Fig. 1 of 
HRES is simulated by utilizing the MATLAB/Simulink. 
The dc-link voltage is controlled at 700 V. The 
distribution power of the HRES is based on the variable 
input source. Specifically, the wind speed increases from 
10m/s to 14m/s at t=0.3s. The solar irradiation increased 
from 0.6 kW/m2 to 1 kW/m2 at t=0.2s and decreased 
from 1kW/m2 to 0.8 kW/m2 at t=0.4s, while the 
temperature is constant at 25°C. 
     The simulation is executed to illustrate the excellent 
performance of the proposed HRES controller under 
following different cases: case 1) Linear load is 
connected to the system at t = 0s and is disconnected at t 
= 0.3s; case 2) nonlinear load (three-phase diode 
rectifier, Lload =10 mH, Rload = 50 Ω is connected to 
system at period t[0.2 0.3]s; case 3) Increased  of 
resistive load by 100% at period t[0.3 0.4]; case 4) 
unbalanced resistive load (RLb = 87.5 %RLa, RLc = 75% 
RLa) at period t[0.4 0.5].  Fig. 9 shows the control 
performance of PV system with solar irradiance 
variations whose data sets. It is seen from this figure that 
the PV system controller tracks the MPPs of the solar 
energy regardless of the rapidly changing wind speed 
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D. Stand-alone control mode VSC 

Fig. 8 demonstrates the block diagram of the proposed 
stand-alone control mode. The sliding surface of this 
control is defined as follows. 
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IV. Simulation results 
Different simulations results are used to analyze the 

dynamic performance of the HRES are presented in this 
work. The overall configuration shown in Fig. 1 of 
HRES is simulated by utilizing the MATLAB/Simulink. 
The dc-link voltage is controlled at 700 V. The 
distribution power of the HRES is based on the variable 
input source. Specifically, the wind speed increases from 
10m/s to 14m/s at t=0.3s. The solar irradiation increased 
from 0.6 kW/m2 to 1 kW/m2 at t=0.2s and decreased 
from 1kW/m2 to 0.8 kW/m2 at t=0.4s, while the 
temperature is constant at 25°C. 
     The simulation is executed to illustrate the excellent 
performance of the proposed HRES controller under 
following different cases: case 1) Linear load is 
connected to the system at t = 0s and is disconnected at t 
= 0.3s; case 2) nonlinear load (three-phase diode 
rectifier, Lload =10 mH, Rload = 50 Ω is connected to 
system at period t[0.2 0.3]s; case 3) Increased  of 
resistive load by 100% at period t[0.3 0.4]; case 4) 
unbalanced resistive load (RLb = 87.5 %RLa, RLc = 75% 
RLa) at period t[0.4 0.5].  Fig. 9 shows the control 
performance of PV system with solar irradiance 
variations whose data sets. It is seen from this figure that 
the PV system controller tracks the MPPs of the solar 
energy regardless of the rapidly changing wind speed 
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where VLdref, VLqref, ILdref, ILqref  are the desired load current 
and voltage in d-and q-axes respectively. The goal of the 
proposed control calculation appeares in Fig. 9 is to 
direct the consistent load voltage and recurrence within 
the sight of different conditions. To accomplish these 
destinations, the accompanying conditions are forced: 
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where VLL is the line-line load voltage and f is the load 
frequency, which is equal to 50 Hz.  The control input is 
defined as follows: 
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where kmi is a positive gain. 
 The equivalent control input is obtained from the 
invariance condition and given by the accompanying 
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IV. Simulation results 
Different simulations results are used to analyze the 

dynamic performance of the HRES are presented in this 
work. The overall configuration shown in Fig. 1 of 
HRES is simulated by utilizing the MATLAB/Simulink. 
The dc-link voltage is controlled at 700 V. The 
distribution power of the HRES is based on the variable 
input source. Specifically, the wind speed increases from 
10m/s to 14m/s at t=0.3s. The solar irradiation increased 
from 0.6 kW/m2 to 1 kW/m2 at t=0.2s and decreased 
from 1kW/m2 to 0.8 kW/m2 at t=0.4s, while the 
temperature is constant at 25°C. 
     The simulation is executed to illustrate the excellent 
performance of the proposed HRES controller under 
following different cases: case 1) Linear load is 
connected to the system at t = 0s and is disconnected at t 
= 0.3s; case 2) nonlinear load (three-phase diode 
rectifier, Lload =10 mH, Rload = 50 Ω is connected to 
system at period t[0.2 0.3]s; case 3) Increased  of 
resistive load by 100% at period t[0.3 0.4]; case 4) 
unbalanced resistive load (RLb = 87.5 %RLa, RLc = 75% 
RLa) at period t[0.4 0.5].  Fig. 9 shows the control 
performance of PV system with solar irradiance 
variations whose data sets. It is seen from this figure that 
the PV system controller tracks the MPPs of the solar 
energy regardless of the rapidly changing wind speed 
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where VLdref, VLqref, ILdref, ILqref  are the desired load current 
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proposed control calculation appeares in Fig. 9 is to 
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where VLL is the line-line load voltage and f is the load 
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where kmi is a positive gain. 
 The equivalent control input is obtained from the 
invariance condition and given by the accompanying 
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IV. Simulation results 
Different simulations results are used to analyze the 

dynamic performance of the HRES are presented in this 
work. The overall configuration shown in Fig. 1 of 
HRES is simulated by utilizing the MATLAB/Simulink. 
The dc-link voltage is controlled at 700 V. The 
distribution power of the HRES is based on the variable 
input source. Specifically, the wind speed increases from 
10m/s to 14m/s at t=0.3s. The solar irradiation increased 
from 0.6 kW/m2 to 1 kW/m2 at t=0.2s and decreased 
from 1kW/m2 to 0.8 kW/m2 at t=0.4s, while the 
temperature is constant at 25°C. 
     The simulation is executed to illustrate the excellent 
performance of the proposed HRES controller under 
following different cases: case 1) Linear load is 
connected to the system at t = 0s and is disconnected at t 
= 0.3s; case 2) nonlinear load (three-phase diode 
rectifier, Lload =10 mH, Rload = 50 Ω is connected to 
system at period t[0.2 0.3]s; case 3) Increased  of 
resistive load by 100% at period t[0.3 0.4]; case 4) 
unbalanced resistive load (RLb = 87.5 %RLa, RLc = 75% 
RLa) at period t[0.4 0.5].  Fig. 9 shows the control 
performance of PV system with solar irradiance 
variations whose data sets. It is seen from this figure that 
the PV system controller tracks the MPPs of the solar 
energy regardless of the rapidly changing wind speed 
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and load condition. The comparison between the 
APOAM and P&O algorithm of power response is 
illustrated in Fig. 10. It is clear from this figure that the 
proposed algorithm is effective in changing weather 
conditions because the work point of the system 
oscillates weakly around the maximum power point. 
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Fig. 9. Control performance PV system in SAM operation 
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Fig. 10. Comparison between the APOAM and P&O algorithm of 

power response 
 
 Fig. 11 shows the response of the wind turbine system 
in SAM operation. The wind speed Vw, the power 
coefficient, the measured and reference rotor speed of 
PMSG, the reference and output of torque of the wind 
turbine, the wind turbine output power are shown in 
Fig.12. The simulation results demonstrate that the 
proposed controller operates the wind generator in the 
maximum power point regardless of variation in the 
environmental conditions and load types tested.  
 Fig. 12 shows the response of the BESS system. This 
figure shows battery voltage (Vb), state of charge of 
battery (SOC%), battery current (Ib) and output of power 
of the battery. It is observed, at period t [0 0.2] the 
aggregate of wind and PV produced power is not 
adequate to supply the heap request to supply the load 

demand. Under this circumstance, the battery discharges 
with a positive current. At period t[0 0.2] the power 
request by the load is not as much as the power created 
by the sources. In this way, the battery is charged of a 
negative current. The reference dc current and measured 
dc current are as shown in Fig. 12 (b). It is observed that 
the measured battery current follows the reference 
current to supply load demand by charging or 
discharging this storage. 
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Fig. 11. Control performance wind turbine system 
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Fig. 12. Control performance of the BESS 

 
 Fig.13 shows the simulation results of the proposed 
control technique under in this test, respectively of load 
voltages (vL,abc,VLdq), load currents (iL,abc, ILdq), output 
currents of VSC (ii,abc Iidq ), the dc bus voltage and active 
power of load. The VSC able to regulate the voltage 
level of local ac load at 230 V and the frequency at 50 
Hz as shown in Fig.15.  Obviously, it can be observed 
from the simulation results that the proposed SMC based 
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control strategy affirms the fast dynamic response and 
voltage tracking performance  with small steady-state 
error and lower part under different load types (balanced 
load, unbalanced load, and nonlinear load). 
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 To better appreciate the upsides of the proposed 
approach, we propose a progression of comparable tests 
with the traditional PI control as shown in Fig. 14. It can 
be seen from this figure and Table I that the proposed 
control system has more points of interest in wording in 
terms of voltage regulation, fast steady-state error, and 
low harmonic distortion.  

TABLE I 
SUMMARY OF RESULTS  

Cases Parameters PI controller SMC controller 

1 THDi(0-0.2s), 
(VLabc,) 

3.73%, 
(220, 220,4, 220,1) 

0.04%, 
(220, 220, 220) 

2 THDi(0.2-0.3s), 10,6%, 10,51%, 

(VLabc,) (220,8 220,8, 220,8) (220 219,9 219,9) 

3 THDi(0.3-0.4s), 
(VLabc,) 

4.74%, 
(220,2 220,3, 220,3) 

1.2%, 
(220 220 220.1) 

4 THDi(0.4-0.5s) 
(VLabc ) 

3.91% 
,(233,4,224,7, 203,8) 

3.1%, 
(233.1 224,2 203.1) 

 
V.    Conclusion 

 The main objective of this work is to contribute to the 
design of an effective and robust control strategy for a 
HRES in isolated sites. A new approach based on the 
non-linear STC is proposed in order to improve the 
energy efficiency of HRES. The performance of the 
proposed method for controlling various converters 
associated to the HRES such as variations in wind speed, 
temperature and solar irradiation, irregularity of the load, 
power demand, unbalanced load, and nonlinear load, was 
verified and compared with the conventional PI 
controllers. The main contribution and advantages of the 
proposed system under all conditions are as follows: 
 

 The proposed MPPT algorithm APOAM STSMC 
control can enhance the performance and 
durability of the PV system and the setting time 
response of the boost converter comparing with 
P&O algorithm.  
 

 The proposed SMC has the advantages of fast 
dynamic response, less overshoot, faster 
disturbances rejection time, small steady-state 
error with good accuracy and very low THD 
value compared with the conventional PI 
controller in all cases. 

 
 It is concluded from the simulation results that, the 
proposed approach improves the quality and provides a 
stable operation of HRES. The robustness and the 
stability of the whole system are widely improved using 
SMC than other classical approaches. 
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control strategy affirms the fast dynamic response and 
voltage tracking performance  with small steady-state 
error and lower part under different load types (balanced 
load, unbalanced load, and nonlinear load). 
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 To better appreciate the upsides of the proposed 
approach, we propose a progression of comparable tests 
with the traditional PI control as shown in Fig. 14. It can 
be seen from this figure and Table I that the proposed 
control system has more points of interest in wording in 
terms of voltage regulation, fast steady-state error, and 
low harmonic distortion.  

TABLE I 
SUMMARY OF RESULTS  

Cases Parameters PI controller SMC controller 

1 THDi(0-0.2s), 
(VLabc,) 

3.73%, 
(220, 220,4, 220,1) 

0.04%, 
(220, 220, 220) 

2 THDi(0.2-0.3s), 10,6%, 10,51%, 

(VLabc,) (220,8 220,8, 220,8) (220 219,9 219,9) 

3 THDi(0.3-0.4s), 
(VLabc,) 

4.74%, 
(220,2 220,3, 220,3) 

1.2%, 
(220 220 220.1) 

4 THDi(0.4-0.5s) 
(VLabc ) 

3.91% 
,(233,4,224,7, 203,8) 

3.1%, 
(233.1 224,2 203.1) 

 
V.    Conclusion 

 The main objective of this work is to contribute to the 
design of an effective and robust control strategy for a 
HRES in isolated sites. A new approach based on the 
non-linear STC is proposed in order to improve the 
energy efficiency of HRES. The performance of the 
proposed method for controlling various converters 
associated to the HRES such as variations in wind speed, 
temperature and solar irradiation, irregularity of the load, 
power demand, unbalanced load, and nonlinear load, was 
verified and compared with the conventional PI 
controllers. The main contribution and advantages of the 
proposed system under all conditions are as follows: 
 

 The proposed MPPT algorithm APOAM STSMC 
control can enhance the performance and 
durability of the PV system and the setting time 
response of the boost converter comparing with 
P&O algorithm.  
 

 The proposed SMC has the advantages of fast 
dynamic response, less overshoot, faster 
disturbances rejection time, small steady-state 
error with good accuracy and very low THD 
value compared with the conventional PI 
controller in all cases. 

 
 It is concluded from the simulation results that, the 
proposed approach improves the quality and provides a 
stable operation of HRES. The robustness and the 
stability of the whole system are widely improved using 
SMC than other classical approaches. 
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voltage tracking performance  with small steady-state 
error and lower part under different load types (balanced 
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 To better appreciate the upsides of the proposed 
approach, we propose a progression of comparable tests 
with the traditional PI control as shown in Fig. 14. It can 
be seen from this figure and Table I that the proposed 
control system has more points of interest in wording in 
terms of voltage regulation, fast steady-state error, and 
low harmonic distortion.  

TABLE I 
SUMMARY OF RESULTS  

Cases Parameters PI controller SMC controller 

1 THDi(0-0.2s), 
(VLabc,) 

3.73%, 
(220, 220,4, 220,1) 

0.04%, 
(220, 220, 220) 

2 THDi(0.2-0.3s), 10,6%, 10,51%, 
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V.    Conclusion 

 The main objective of this work is to contribute to the 
design of an effective and robust control strategy for a 
HRES in isolated sites. A new approach based on the 
non-linear STC is proposed in order to improve the 
energy efficiency of HRES. The performance of the 
proposed method for controlling various converters 
associated to the HRES such as variations in wind speed, 
temperature and solar irradiation, irregularity of the load, 
power demand, unbalanced load, and nonlinear load, was 
verified and compared with the conventional PI 
controllers. The main contribution and advantages of the 
proposed system under all conditions are as follows: 
 

 The proposed MPPT algorithm APOAM STSMC 
control can enhance the performance and 
durability of the PV system and the setting time 
response of the boost converter comparing with 
P&O algorithm.  
 

 The proposed SMC has the advantages of fast 
dynamic response, less overshoot, faster 
disturbances rejection time, small steady-state 
error with good accuracy and very low THD 
value compared with the conventional PI 
controller in all cases. 

 
 It is concluded from the simulation results that, the 
proposed approach improves the quality and provides a 
stable operation of HRES. The robustness and the 
stability of the whole system are widely improved using 
SMC than other classical approaches. 
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control strategy affirms the fast dynamic response and 
voltage tracking performance  with small steady-state 
error and lower part under different load types (balanced 
load, unbalanced load, and nonlinear load). 
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 To better appreciate the upsides of the proposed 
approach, we propose a progression of comparable tests 
with the traditional PI control as shown in Fig. 14. It can 
be seen from this figure and Table I that the proposed 
control system has more points of interest in wording in 
terms of voltage regulation, fast steady-state error, and 
low harmonic distortion.  

TABLE I 
SUMMARY OF RESULTS  

Cases Parameters PI controller SMC controller 

1 THDi(0-0.2s), 
(VLabc,) 

3.73%, 
(220, 220,4, 220,1) 

0.04%, 
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V.    Conclusion 

 The main objective of this work is to contribute to the 
design of an effective and robust control strategy for a 
HRES in isolated sites. A new approach based on the 
non-linear STC is proposed in order to improve the 
energy efficiency of HRES. The performance of the 
proposed method for controlling various converters 
associated to the HRES such as variations in wind speed, 
temperature and solar irradiation, irregularity of the load, 
power demand, unbalanced load, and nonlinear load, was 
verified and compared with the conventional PI 
controllers. The main contribution and advantages of the 
proposed system under all conditions are as follows: 
 

 The proposed MPPT algorithm APOAM STSMC 
control can enhance the performance and 
durability of the PV system and the setting time 
response of the boost converter comparing with 
P&O algorithm.  
 

 The proposed SMC has the advantages of fast 
dynamic response, less overshoot, faster 
disturbances rejection time, small steady-state 
error with good accuracy and very low THD 
value compared with the conventional PI 
controller in all cases. 

 
 It is concluded from the simulation results that, the 
proposed approach improves the quality and provides a 
stable operation of HRES. The robustness and the 
stability of the whole system are widely improved using 
SMC than other classical approaches. 
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