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conFig.ured to stabilise and synchronise the slave system for two cases of reference input, that are, 
constant and chaotic signals. The output results showed the slave system follows the master system’s 
behaviour with zero synchronisation error. 
 
Keywords: Chaos, Chua circuit, Synchronisation, Nonlinear system 
 
Article History 
Received 7 August 2020 
Received in revised form 2 September 2020 
Accepted 2 September 2020 

 
I. Introduction 

What is chaos exactly? When engineers use the word 
chaos, they will imagine unpredictable results. It is tough 
to define chaos but it is easy to “recognize it” [1]. The 
easiest way to observe chaos is in Chua’s circuit. History 
about chaos was started in 1889 when King Oscar II of 
Sweden had a question about ‘three bodies problem’ of 
planets in a contest. Then, a mathematician named Henri 
Poincare won the prize, which he discovered that orbit of 
three or more interacting celestial bodies that exhibits 
unpredictable behaviour. Thus, chaos is born [2]. 

In 1963, Edward Lorenz published a journal with title 
“Deterministic Nonperiodic Flow” [3] and he was credited 
for the Chaos Theory. In [4], a calculation about three 
decimal places which yield a different outcome of the 
model. When the process repeated many times, the authors 
found out that there is a difference result each time. The 
principle of Sensitive Dependence on Initial Conditions 
(SDIC) is discovered where it is the key component in a 
chaotic system. This yields a “Butterfly Effect” that is 
known as Lorenz attractor as shown in Fig. 1. 

 
 

 
Fig. 1. Butterfly Effect [5]. 

 
 

In 1980, Ueda and Akamatsu found a chaos in negative 
resistance oscillator namely Chua circuit. This circuit was 
widely used for experiment in controlling chaotic system, 
see for example works in [5]-[7]. Researcher and scientist 
starting to design a circuit model as shown in Fig. 2 that 
contains an inductor, two capacitors, a linear resistor, and 
a nonlinear resistor [8]. By applying the Kirchhoff’s law, 
Chua's circuit is described by three differential equations: 

 

𝐶𝐶1
𝑑𝑑𝑣𝑣𝑐𝑐1

𝑑𝑑𝑑𝑑 = 𝐺𝐺(𝑉𝑉𝐶𝐶2 − 𝑉𝑉𝐶𝐶1) − 𝑔𝑔(𝑉𝑉𝐶𝐶1) 
(1) 

𝐶𝐶1
𝑑𝑑𝑣𝑣𝑐𝑐2

𝑑𝑑𝑑𝑑 = 𝐺𝐺 (𝑉𝑉𝐶𝐶1 − 𝑉𝑉𝐶𝐶2) + 𝐼𝐼𝐿𝐿 
(2) 

𝐿𝐿 𝑑𝑑𝑖𝑖𝐿𝐿
𝑑𝑑𝑑𝑑 = −𝑉𝑉𝐶𝐶2 

(3) 

where 
𝑔𝑔(𝑣𝑣𝑐𝑐1) = 𝑚𝑚𝑜𝑜𝑣𝑣𝑅𝑅 + 1

2 (𝑚𝑚1 − 𝑚𝑚0) [|𝑣𝑣𝑅𝑅 + 𝐵𝐵𝑃𝑃| − |𝑣𝑣𝑅𝑅 − 𝐵𝐵𝑃𝑃|]    (4) 
 

 
Fig. 2. Chua Circuit [9]. 

 
where 𝑚𝑚0 and 𝑚𝑚1 are the slopes in the inner and outer 
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regions, and ±𝐵𝐵𝑃𝑃  denote the breakpoints. The nonlinear 
resistor generates a piecewise function represented in Fig. 
3. 
 
 
 

 
 

Fig. 3. Chua's nonlinear resistor function [9]. 
 

The objectives of the present paper are to identify the 
range of resistance that exhibits chaos in the system’s 
dynamic and to validate the state-space model in the 
MATLAB-simulation environment.  This paper proposes 
a simple state feedback control via pole-placement to 
stabilize the system trajectories and synchronize two 
systems for a certain initial conditions and set-points. 

II. Literature Review 
Chaos system is a dynamical system that highly 

sensitive to initial condition and discovered by Edward 
Norton Lorenz in weathers model. In this system, he used 
Lyapunov exponent method to measure the divergence of 
nearby trajectories and it can quantify the chaotic systems. 
A positive Lyapunov exponent and phase space 
compactness will be determined to observe the chaotic 
system. Chaos behaviour can be found in many electrical 
systems, for example in electronic circuits and 
telecommunication systems.  

An electronic circuit consists of passive network and 
nonlinear elements, such as infinite impulse response 
(IIR) digital filter and oscillator circuit display chaos and 
bifurcation behaviours. The common goal of control for 
chaotic electronic circuits is suppression of oscillations 
and production of stable periodic or constant motion. Two 
methods of feedback controller known to stabilize the 
chaotic behavior are OGY and Pyragas methods. The 
former method uses feedback controller technique to 
eliminate chaos by shading one of the infinitely unstable 
periodic orbits in the chaotic attractor [9], while the latter 
has been developed to stabilize the periodic orbit by 
applying small time continuous into a parameter. It is 
known as delayed feedback control and evolve in 
continuous time [10]. 

Another goal could be synchronisation of the system to 
a different chaotic signal. Three forms of chaos 

synchronisation are chaotic masking, chaotic modulation, 
and chaotic switching. These applications are important in 
secure communication systems. In chaotic masking, the 
information signal is connected at the transmitter while at 
receiver, the original chaotic signal is reconstructed by 
using chaos synchronisation [11]. Meanwhile in chaotic 
modulation, the communication is based on modulated 
transmitter parameter which is information signal is 
combine with chaotic system for modulation. At receiver, 
the dynamics of chaotic signal is tracked for retrieve the 
information signal [12]. In chaotic switching, the working 
principle is to map bits or symbol to basic functions of 
chaotic signal to show from one or more chaotic attractors 
[13].  

On the other hand, chaos synchronization for two 
systems known as master-slave system are classified as 
complete synchronisation, generalized synchronisation, 
projective synchronisation, phase synchronisation, lag 
synchronisation, impulsive synchronisation, and adaptive 
synchronisation. Details of these types of synchronisation 
can be referred in [14 – 21], respectively and the 
references therein. Besides that, there is also another 
method known as continuous control [22]. To synchronise 
two chaotic systems, system A and B are denoted as 𝑥𝑥 
and 𝑦𝑦, respectively and described by 

 
𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑 = �̇�𝑥 = 𝑓𝑓(𝑥𝑥) 

(5) 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑 =   �̇�𝑦 = 𝑓𝑓(𝑦𝑦) 

(6) 

 
where 𝑥𝑥, 𝑦𝑦 ∈ 𝑅𝑅𝑛𝑛. The configuration of Fig. 4 shows the 
systems are coupled in unidirectional form. 𝐷𝐷(𝑑𝑑) in the 
system is defined to compare the signal 𝑥𝑥𝑖𝑖(𝑑𝑑) and 𝑦𝑦𝑖𝑖(𝑑𝑑), 
where 𝑖𝑖 = 0, 1, 2, … and the parameter is 𝐾𝐾 >  0. 
 

        𝐾𝐾[𝑥𝑥𝑖𝑖(𝑑𝑑) −  𝑦𝑦𝑖𝑖(𝑑𝑑)] = 𝐾𝐾𝐷𝐷(𝑑𝑑)  (7) 
 

 
Fig. 4. Continuous control of synchronisation. 

 
The advantages of this method are it can synchronise 
multidimensional system by feeding back a single variable 
and very convenient to apply. But the limitation is both 
number of positive Lyapunov exponents in coupled 
system and single systems must equal for synchronising. 
  

𝑔𝑔(𝑣𝑣𝑐𝑐1) 
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III. Methodology 
This section explains the design of chaotic circuits 

including selection of resistance value, feedback control 
and synchronise control of the chaotic systems. The 
experiments started identifying the range of resistance of 
the Chua’s circuit that yield a chaotic behaviour and then 
a resistance value is chosen to derive a mathematical 
model using the Kirchhoff’s laws. The mathematical 
model is converted into dimensionless state space. The 
behaviour of attractor is observed, and the synchronising 
controller is designed in MATLAB-Simulink 
environment. A state-feedback controller is designed in 
via pole placement method to stabilise the system. 
Furthermore, a reference tracking for the feedback 
controller is designed for the system to converge and 
maintain at a set-point. The analysis is conducted by 
observing the system trajectories in terms of the steady 
state and synchronisation errors. Fig. 5 shows the 
flowchart of the experiments. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Project flowchart. 

 
A. Chua’s circuit modelling for master and slave systems 

Chua’s circuit is modelled based in equation (1)-(4) to 
determine the relationship between the current and 
voltages of the circuit. It is observed that chaotic 
behaviour also depends on resistance value. Thus, the 
value of resistance, R is selected at 1.1kΩ, 1.4kΩ, 1.7kΩ, 
2.0kΩ and 2.3kΩ. This is to identify at which value of 
resistance a chaotic attractor is produced.  

The equations (1) – (4) in terms of passive elements are 
given as in equation (8) 

 

[
 
 
 
 
 
 − 1

𝑅𝑅𝐶𝐶1

1
𝑅𝑅𝐶𝐶1

0

− 1
𝑅𝑅𝐶𝐶2

− 1
𝑅𝑅𝐶𝐶2

1
𝐶𝐶2

0 −1
𝐿𝐿 0 ]

 
 
 
 
 
 

 

(8) 

 
The Chua's nonlinear resistor function in Fig.. 3 is  

𝑓𝑓(𝐻𝐻𝐻𝐻) = 𝑚𝑚0𝑉𝑉1 + 1
2 (𝑚𝑚1 − 𝑚𝑚0)[|𝑉𝑉1 + 𝐵𝐵𝑝𝑝| − |𝑉𝑉1 − 𝐵𝐵𝑝𝑝|]  (9) 

 
where 𝑓𝑓(𝐻𝐻𝐻𝐻) or 𝑔𝑔(𝑣𝑣𝑐𝑐1) is the current through Chua’s 
diode (𝐼𝐼𝑁𝑁𝑁𝑁). The voltage-controlled driving point 
characteristic is modelled as  
 

𝐼𝐼𝑁𝑁𝑅𝑅 = {
𝑚𝑚1𝑉𝑉𝑐𝑐1 + (𝑚𝑚1 − 𝑚𝑚0)𝐵𝐵𝑝𝑝

𝑚𝑚0𝑉𝑉𝑐𝑐1
𝑚𝑚1𝑉𝑉𝑐𝑐1 + (𝑚𝑚0 − 𝑚𝑚1)𝐵𝐵𝑝𝑝 

   
𝑉𝑉𝐶𝐶1 < −𝐵𝐵𝑝𝑝

𝐵𝐵𝑝𝑝 ≤ 𝑉𝑉𝐶𝐶1 ≤ −𝐵𝐵𝑝𝑝
𝑉𝑉𝐶𝐶1 > −𝐵𝐵𝑝𝑝

  (10) 

 
The Chua’s circuit parameters values are presented in 
Table I. 

TABLE I 
CHUA’S CIRCUIT PARAMETERS 

Parameter Value 

Inductor, 𝑳𝑳 
Capacitor, 𝑪𝑪𝟏𝟏 
Capacitor, 𝑪𝑪𝟐𝟐 

Breakpoint, 𝑩𝑩𝒑𝒑 

Inner slopes, 𝒎𝒎𝟎𝟎 
Outer slopes, 𝒎𝒎𝟏𝟏 

18 𝑚𝑚𝐻𝐻 
10 𝑛𝑛𝑛𝑛 
100 𝑛𝑛𝑛𝑛 
±1.186 
 −8/7 
−5/7 

 
The parameters of master and slave systems are the same 
except for the initial condition. A different initial 
condition is used to produce different pattern of chaotic 
signals between both systems. 

On the other hand, for the Simulink application, 
equations (1) - (4) are converted into dimensionless form 
as shown in equations (11) - (14) to observe chaotic in 
time series analysis. Thus, it will be easier and more 
convenient if the set of differential equation is simplified 
into a dimensionless parameter (𝛼𝛼, 𝛽𝛽, a, b). 

 

Design feedback control and reference tracking 
system via pole placement for a system 

End 

Configure the synchronisation control for the 
master and slave systems. 

Varies the resistance value and observe the 
dynamic behaviour 

Select a chaotic system, reference tracking and 
synchronisation methods 

Construct the Chua’s circuit in simulation 
environment 

Start 

Represent the Chua’s circuit in dimensionless 
state space 

Analyse the system’s performance in terms of 
steady state and synchronisation errors. 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝛼𝛼[−𝑑𝑑 + 𝑦𝑦 −  𝑓𝑓(𝐻𝐻𝑑𝑑)] (11) 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑 =  𝑑𝑑 − 𝑦𝑦 + 𝑧𝑧  (12) 

𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑 = −𝛽𝛽𝑦𝑦 

(13) 

𝑓𝑓(𝐻𝐻𝑑𝑑) =  𝑎𝑎0𝑑𝑑 + 1
2 (𝑎𝑎1 − 𝑎𝑎0)[|𝑑𝑑 + 1| − |𝑑𝑑 − 1|] (14) 

 
where 

𝑑𝑑 =  𝑉𝑉1
𝐵𝐵𝑝𝑝

 𝑦𝑦 =  𝑉𝑉2
𝐵𝐵𝑝𝑝

 𝑧𝑧 =  
𝑅𝑅𝑖𝑖𝐿𝐿
𝐵𝐵𝑝𝑝

 

𝛼𝛼 =  𝐶𝐶2
𝐶𝐶1

 𝛽𝛽 =  𝑅𝑅2𝐶𝐶2
𝐿𝐿  

 

𝑎𝑎0 =  |𝑅𝑅𝑚𝑚0| 𝑎𝑎1 =  |𝑅𝑅𝑚𝑚1|  
 
Therefore, the state space equation for the master and 
slave systems has the form  
 

�̇�𝑑 = 𝐴𝐴𝑑𝑑 + 𝐵𝐵 (15) 
𝑦𝑦 = 𝐶𝐶𝑑𝑑 (16) 

 
where 

A = [
−𝛼𝛼 𝛼𝛼 0
1 −1 1
0 𝛽𝛽 0

] B = [
1
0
0

] 

 

C = [1 0 0] 
 

In the next sections, two cases of synchronisation are 
presented. The first case considers a reference point 
tracking of the master-slave system, that is, the slave 
follows a constant output of the master system. The second 
case considers a chaos synchronisation, that is, the slave 
follows the chaotic signal of the master system. 

B. Case 1: Set-point master-slave synchronisation 

A feedback controller is designed in the master and 
slave system to drive the systems to desired input state 
equilibrium points. The pole placement method is applied 
for the system to has close-loop poles at −15+j5, −15−j5 
and −5. The initial conditions in master and slave systems 
are [0.1 0.1 0.1] and [0.3 0.3 0.3], respectively. 
The state equations are stated as in equations (17) – (20) 
where 𝑚𝑚 and 𝑠𝑠 denote master and slave systems, 
respectively. 

 
�̇�𝑑𝑚𝑚 = 𝐴𝐴𝑑𝑑𝑚𝑚 + 𝐵𝐵𝑢𝑢𝑚𝑚 (17) 

𝑦𝑦𝑚𝑚 = 𝐶𝐶𝑑𝑑𝑚𝑚 (18) 
�̇�𝑑𝑠𝑠 = 𝐴𝐴𝑑𝑑𝑠𝑠 + 𝐵𝐵𝑢𝑢𝑠𝑠 (19) 

𝑦𝑦𝑠𝑠 = 𝐶𝐶𝑑𝑑𝑠𝑠 (20) 
 

where the system parameters are given as 
 

𝐴𝐴 = [
−10 10 0

1 −1 1
0 −16 0

] 𝐵𝐵 = [
1
0
0

] 

 

𝐶𝐶 = [1 0 0]. 
 

Then, the parameters above are substituted into equation 
(21) to find the value of 𝐾𝐾. 
 

det(𝑠𝑠𝑠𝑠 − (𝐴𝐴 − 𝐵𝐵𝐾𝐾) = 0 (21) 
 
The reference set-point 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚 of the master system is 
determined for the desired input value 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚 of 0.5. The 
feedback controller of the system with reference tracking 
can written as shown below: 
 

𝑢𝑢𝑚𝑚 = 𝐾𝐾 (𝑑𝑑𝑚𝑚 − 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚
) + 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚 (22) 

𝑢𝑢𝑠𝑠 = 𝐾𝐾(𝑑𝑑𝑠𝑠 − 𝑑𝑑𝑚𝑚) + 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠 (23) 
 
where 𝐾𝐾  =  [𝐾𝐾1 𝐾𝐾2 𝐾𝐾3]. 
 
Hence, the master and slave systems with reference 
tracking satisfy 
 

�̇�𝑑𝑚𝑚 = 𝐴𝐴𝑑𝑑𝑚𝑚 + 𝐵𝐵 [𝐾𝐾(𝑑𝑑𝑚𝑚 − 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟) + 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚
] (24) 

𝑦𝑦𝑚𝑚 = 𝐶𝐶𝑑𝑑𝑚𝑚 (25) 
�̇�𝑑𝑠𝑠 = 𝐴𝐴𝑑𝑑𝑠𝑠 + 𝐵𝐵 [𝐾𝐾(𝑑𝑑𝑠𝑠 − 𝑑𝑑𝑚𝑚) + 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠

] (26) 

𝑦𝑦𝑠𝑠 = 𝐶𝐶𝑑𝑑𝑠𝑠 (27) 
 

 
Fig. 6 illustrates the master-slave system with reference 

tracking state-feedback controller. The synchronisation 
error between the master and slave systems is observed at 
Scope z1 which the synchronization error is  

 
𝑒𝑒 = 𝑑𝑑𝑠𝑠 − 𝑑𝑑𝑚𝑚. (28) 

  

C. Case 2: Chaotic master-slave synchronisation 

In chaos synchronisation, the master system produces a 
chaotic signal which is fed to the slave system as the 
reference input. The slave system is to follow the 
behaviour of master system when the state-feedback 
controller is activated. The system configuration is 
illustrated in Fig. 7. The state-variable signals in both 
systems are compared in Scope 3 and the synchronisation  
error is observed at Scope 4. The error is fed back to the 
system via a controller. 
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Fig. 6. Reference tracking in the master-slave system. 
 
 

 
 

Fig. 7. Chaos synchronisation in the master-slave systems. 
 

IV. Result and Discussion 

A. Observation of chaotic behaviour  

Chua’s circuit is a non-linear circuit used to show 
chaotic behaviour in electrical system. The behaviour is 
induced because of capacitor, inductor, and a nonlinear 
resistor in the circuit. The resistor value is varied within a 
range 1.1 −  2.3 𝑘𝑘Ω and the other parameters of Chua’s 
circuit for master and slave system follow the value in 
Table 2 with the initial condition of 
[−3 −0.13 0.003].   The types of behaviour observed 
is shown in Table II.  

 
TABLE II  

TYPES OF BEHAVIOUR 

Resistance 
value (kΩ) 

Types of   
bifurcation 

Types of  
behaviour 

1.1 
1.4 
1.7 
2.0 
2.3 

Limit cycle 
Limit cycle 

Double scroll attractor 
Fixed point 
Fixed point 

Periodic 
Periodic 
Chaotic 

Equilibrium 
Equilibrium 

 
Fig. 8 shows that double scroll attractor exhibited for  

𝑅𝑅 = 1.7𝑘𝑘Ω.  
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Fig. 8. Double scroll attractor at R=1.7 kΩ. 
 

Double scroll attractor exhibits when two spirals points 
of attraction is curled up and form infinite rotations. The 
trajectory in the attractor starts to rotate at the upper one 
in anti-clockwise direction. When the rotation is 
continued, the trajectory move further until at one point it 
will not return to a starting point and descend downward 
to 𝑉𝑉𝑐𝑐1 axis in spiral paths on the lower part of the attractor. 
This causes the attractor to rotate again in anti-clockwise 
around the lower hole and produces lower attractor. Thus, 
the behaviour shows the same pattern as in the upper part 
of the attractor. 

B. Chaotic behaviour in Simulink 

In Simulink, the chaotic behaviour is observed in time 
real-time. The initial condition of the master system is [ 
0.1 0.1 0.1] and the slave system is [0.3 0.3 0.3].   

Fig. 9 shows a chaos signal in both systems for the given 
initial conditions. The signals between the master and 
slave systems are compared for the three state variables, 
that are the current in inductor, and voltages of capacitor 
1 and capacitor 2. These signals exhibit a different pattern 
but periodic data for different initial condition.  

 

 
(a)  

 

 
(b) 

 
(c) 
 

Fig. 9. Chaos in master and slave for (a) inductor, 
 (b) capacitor 1, (c) capacitor 2. 

 
The voltage-current relationship of the Chua’s diode is 

shown in Fig. 10. The graph was divided into three 
segments of piecewise-linear that are, two outers (𝑚𝑚0) and 
one inner (𝑚𝑚1) negative slope with two breakpoints (±𝐵𝐵𝑝𝑝). 
The variables of the nonlinear representation in equation 
(14) are 𝑚𝑚0= −8/7, 𝑚𝑚1= −5/7, ±𝐵𝐵𝑝𝑝= ±1.186.  

 

 
Fig. 10. V-I characteristics of Chua’s diodes. 

 

C. Case 1: Set-point master-slave synchronization 

Feedback controller via pole placement method was 
designed in master and slave circuits to stabilise the 
chaotic system. A feedback gain of 𝐾𝐾 =
[24 36 −44.12] is selected to place the closed-loop 
poles at −15 + 𝑗𝑗5, −15 − 𝑗𝑗5 and −5. Fig. 11 shows the 
signals of the master and slave systems started from a 
chaotic to zero steady state after controller activated at 20 
seconds.  

 

 
(a) 
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(b) 

 
Fig. 11. Feedback gain in (a) master system (b) slave system. 

 
A reference input (𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟, 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟) is applied to the systems 

for the feedback controller to track the desired reference 
and at the same time stabilize the system with desired 
requirement. The reference input is 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 = [1.6750   0  −
1.6750] with control input reference,  𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟 = 0.5.  

Fig. 12 showed that the state variables track when the 
reference value 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 the controller is activated at 𝑡𝑡 = 20 
seconds.  Both output trajectories converge to the desired 
reference value. 

 

 
(a) 

 

 
(b) 

 
Fig. 12. Reference tracking in (a) master system (b) slave system. 

 
The synchronisation error between the master and slave 

systems is shown in Fig. 13. It can be observed that there 
is error before the controller is activated at 𝑡𝑡 = 20 seconds 
and zero error after 20 seconds. 

 

 
 

Fig. 13. Master-slave synchronisation error. 
 

D. Case 2: Chaotic master-slave synchronisation 

Chaotic synchronisation is defined as the trajectories of 
the slave system follows the master system’s chaotic 
behaviour. Recall that, the behaviour of the master system 
is chaotic and unpredictable due to uncontrolled system. 
This output from the master system is used as reference 
input for the slave system. To synchronise the systems 
state feedback controller is applied in the slave system. A 
feedback gain of 𝐾𝐾 = [24 36 −44.12] is selected to 
place the closed-loop poles at −15 + 𝑗𝑗5, −15 − 𝑗𝑗5 and 
−5. 

Fig. 14 showed the chaos synchronisation between the 
master and slave systems at 𝑡𝑡 = 50 seconds when the state 
feedback controller in the slave system is activated.  

 

 
(a) 
 

 
(b) 
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(c) 

 
Fig. 14. Chaos synchronisation in (a) voltage of capacitor 1, (b) voltage 

of capacitor 2, and (c) current of inductor. 
 

The synchronisation error can be observed by 
comparing the outputs of the master system 𝑥𝑥𝑚𝑚 and the 
slave system 𝑥𝑥𝑠𝑠.  When the difference is zero, both 
systems is synchronised as shown in Fig. 15. The error 
signals before 𝑡𝑡 = 50 seconds are between ±6 and it 
converges to zero error after the controller is activated.  

 

 
 

Fig. 15. Master-slave synchronisation error. 

V. Conclusion 

In conclusion, Chua’s circuit is modelled to determine 
the chaotic attractor and behaviour of the circuit. The 
parameters of chaotic attractor are chosen specifically to 
exhibit chaotic behaviour in phase portrait and time 
domain analysis. Thus, the type of attractor can be 
identified. In this paper, there are two identical Chua’s 
circuits are used in designing synchronise chaotic control 
that are named as master and slave systems. The 
parameters for both systems are the same except the initial 
condition. This is to trigger different pattern of chaos for 
both circuits. Two cases of synchronisation control are 
considered, a) constant reference synchronisation, b) 
chaotic synchronisation. A state-feedback controller is 
implemented to achieve master-slave synchronisation. 
The results show the conFig.urations able to track the 
reference inputs with zero synchronisation error for 
specific initial conditions and set-points.  
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